SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-122511"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-122511" > Numerical study of ...

Numerical study of laminar-turbulent transition in particle-laden channel flow

Klinkenberg, Joy (författare)
KTH,Mekanik,Linné Flow Center, FLOW
Sardina, Gaetano (författare)
KTH,Mekanik,Linné Flow Center, FLOW
de Lange, H. C. (författare)
visa fler...
Brandt, Luca (författare)
KTH,Mekanik,Linné Flow Center, FLOW
visa färre...
 (creator_code:org_t)
2013
2013
Engelska.
Ingår i: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics. - 1539-3755 .- 1550-2376. ; 87:4, s. 043011-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We present direct numerical simulations of subcritical transition to turbulence in a particle-laden channel flow, with particles assumed rigid, spherical, and heavier than the fluid. The equations describing the fluid flow are solved with an Eulerian mesh, whereas those describing the particle dynamics are solved by Lagrangian tracking. Two-way coupling between fluid and particles is modeled with Stokes drag. The numerical code is first validated against previous results from linear stability: the nonmodal growth of streamwise vortices resulting in streamwise streaks is still the most efficient mechanism for linear disturbance amplification at subcritical conditions as for the case of a single phase fluid. To analyze the full nonlinear transition, we examine two scenarios well studied in the literature: (1) transition initiated by streamwise independent counter-rotating streamwise vortices and one three-dimensional mode and (2) oblique transition, initiated by the nonlinear interaction of two symmetric oblique waves. The threshold energy for transition is computed, and it is demonstrated that for both scenarios the transition may be facilitated by the presence of particles at low number density. This is due to the fact that particles may introduce in the system detrimental disturbances of length scales not initially present. At higher concentrations, conversely, we note an increase of the disturbance energy needed for transition. The threshold energy for the oblique scenario shows a more significant increase in the presence of particles, by a factor about four. Interestingly, for the streamwise-vortex scenario the time at which transition occurs increases with the particle volume fraction when considering disturbances of equal initial energy. These results are explained by considering the reduced amplification of oblique modes in the two-phase flow. The results from these two classical scenarios indicate that, although linear stability analysis shows hardly any effect on optimal growth, particles do influence secondary instabilities and streak breakdown. These effects can be responsible of the reduced drag observed in turbulent channel flow laden with heavy particles.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Near-Wall Turbulence
Plane Couette-Flow
Drag Reduction
Shear Flows
Pipe-Flow
Stability
Gas
Simulations
Boundary

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Klinkenberg, Joy
Sardina, Gaetano
de Lange, H. C.
Brandt, Luca
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
Artiklar i publikationen
Physical Review ...
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy