SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-269568"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-269568" > 3D-Printed Hydrogel...

3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization

McCracken, Joselle M. (författare)
Univ Illinois, Dept Chem, 600 S Matthews Ave, Urbana, IL 61801 USA.
Rauzan, Brittany M. (författare)
Univ Illinois, Dept Chem, 600 S Matthews Ave, Urbana, IL 61801 USA.
Kjellman, Jacob C. E. (författare)
Univ Illinois, Dept Chem, 600 S Matthews Ave, Urbana, IL 61801 USA.
visa fler...
Kandel, Mikhail E. (författare)
Dept Elect & Comp Engn, 4055 Beckman Inst,MC 251,405 N Mathews, Urbana, IL 61801 USA.
Liu, Yu Hao (författare)
Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.;Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
Badea, Adina (författare)
Univ Illinois, Dept Chem, 600 S Matthews Ave, Urbana, IL 61801 USA.
Miller, Lou Ann (författare)
Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA.;Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA.
Rogers, Simon A. (författare)
Univ Illinois, Dept Chem & Biomol Engn, 600 S Matthews Ave, Urbana, IL 61801 USA.
Popescu, Gabriel (författare)
Dept Elect & Comp Engn, 4055 Beckman Inst,MC 251,405 N Mathews, Urbana, IL 61801 USA.
Nuzzo, Ralph G. (författare)
KTH,Yt- och korrosionsvetenskap
visa färre...
Univ Illinois, Dept Chem, 600 S Matthews Ave, Urbana, IL 61801 USA Dept Elect & Comp Engn, 4055 Beckman Inst,MC 251,405 N Mathews, Urbana, IL 61801 USA. (creator_code:org_t)
2018-11-22
2019
Engelska.
Ingår i: Advanced Healthcare Materials. - : WILEY. - 2192-2640 .- 2192-2659. ; 8:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Materials chemistries for hydrogel scaffolds that are capable of programming temporal (4D) attributes of cellular decision-making in supported 3D microcultures are described. The scaffolds are fabricated using direct-ink writing (DIW)-a 3D-printing technique using extrusion to pattern scaffolds at biologically relevant diameters (<= 100 mu m). Herein, DIW is exploited to variously incorporate a rheological nanoclay, Laponite XLG (LAP), into 2-hydroxyethyl methacrylate (HEMA)-based hydrogels-printing the LAP-HEMA (LH) composites as functional modifiers within otherwise unmodified 2D and 3D HEMA microstructures. The nanoclay-modified domains, when tested as thin films, require no activating (e.g., protein) treatments to promote robust growth compliances that direct the spatial attachment of fibroblast (3T3) and preosteoblast (E1) cells, fostering for the latter a capacity to direct long-term osteodifferentiation. Cell-to-gel interfacial morphologies and cellular motility are analyzed with spatial light interference microscopy (SLIM). Through combination of HEMA and LH gels, high-resolution DIW of a nanocomposite ink (UniH) that translates organizationally dynamic attributes seen with 2D gels into dentition-mimetic 3D scaffolds is demonstrated. These analyses confirm that the underlying materials chemistry and geometry of hydrogel nanocomposites are capable of directing cellular attachment and temporal development within 3D microcultures-a useful material system for the 4D patterning of hydrogel scaffolds.

Ämnesord

NATURVETENSKAP  -- Kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences (hsv//eng)

Nyckelord

3D printing
biomineralization
cellular biocompliance
direct ink write 4D printing
hydrogel nanocomposites

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy