SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:kth-326918"
 

Sökning: onr:"swepub:oai:DiVA.org:kth-326918" > Predicting the wall...

Predicting the wall-shear stress and wall pressure through convolutional neural networks

Geetha Balasubramanian, Arivazhagan (författare)
KTH,Teknisk mekanik
Guastoni, Luca (författare)
KTH,SeRC - Swedish e-Science Research Centre,Turbulent simulations laboratory
Schlatter, Philipp (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Strömningsmekanik och Teknisk Akustik,Lehrstuhls für Strömungsmechanik (LSTM), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
visa fler...
Azizpour, Hossein, 1985- (författare)
KTH,Robotik, perception och lärande, RPL,SeRC - Swedish e-Science Research Centre
Vinuesa, Ricardo (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Strömningsmekanik och Teknisk Akustik
visa färre...
 (creator_code:org_t)
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The objective of this study is to assess the capability of convolution-based neural networks to predict wall quantities in a turbulent open channel flow. The first tests are performed by training a fully-convolutional network (FCN) to predict the 2D velocity-fluctuation fields at the inner-scaled wall-normal location y+ target, using the sampled velocity fluctuations in wall-parallel planes located farther from the wall, at y+ input. The predictions from the FCN are compared against the predictions from a proposed R-Net architecture. Since the R-Net model is found to perform better than the FCN model, the former architecture is optimized to predict the 2D streamwise and spanwise wall-shear-stress components and the wall pressure from the sampled velocity-fluctuation fields farther from the wall. The dataset is obtained from DNS of open channel flow at Reτ=180 and 550. The turbulent velocity-fluctuation fields are sampled at various inner-scaled wall-normal locations, along with the wall-shear stress and the wall pressure. At Reτ=550, both FCN and R-Net can take advantage of the self-similarity in the logarithmic region of the flow and predict the velocity-fluctuation fields at y+=50 using the velocity-fluctuation fields at y+=100 as input with about 10% error in prediction of streamwise-fluctuations intensity. Further, the R-Net is also able to predict the wall-shear-stress and wall-pressure fields using the velocity-fluctuation fields at y+=50 with around 10% error in the intensity of the corresponding fluctuations at both Reτ=180 and 550. These results are an encouraging starting point to develop neural-network-based approaches for modelling turbulence near the wall in large-eddy simulations. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Nyckelord

Turbulent channel flow
wall-shear stress
deep learning
fully-convolutional network
self-similarity

Publikations- och innehållstyp

vet (ämneskategori)
ovr (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy