SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:liu-168435"
 

Sökning: onr:"swepub:oai:DiVA.org:liu-168435" > Comparative Analysi...

Comparative Analysis of Travel Patterns from Cellular Network Data and an Urban Travel Demand Model

Breyer, Nils, 1988- (författare)
Linköpings universitet,Kommunikations- och transportsystem,Tekniska fakulteten
Rydergren, Clas, 1972- (författare)
Linköpings universitet,Kommunikations- och transportsystem,Tekniska fakulteten
Gundlegård, David, 1978- (författare)
Linköpings universitet,Kommunikations- och transportsystem,Tekniska fakulteten
 (creator_code:org_t)
John Wiley & Sons, 2020
2020
Engelska.
Ingår i: Journal of Advanced Transportation. - : John Wiley & Sons. - 0197-6729 .- 2042-3195.
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Data on travel patterns and travel demand are an important input to today’s traffic models used for traffic planning. Traditionally, travel demand is modelled using census data, travel surveys, and traffic counts. Problems arise from the fact that the sample sizes are rather limited and that they are expensive to collect and update the data. Cellular network data are a promising large-scale data source to obtain a better understanding of human mobility. To infer travel demand, we propose a method that starts by extracting trips from cellular network data. To find out which types of trips can be extracted, we use a small-scale cellular network dataset collected from 20 mobile phones together with GPS tracks collected on the same device. Using a large-scale dataset of cellular network data from a Swedish operator for the municipality of Norrköping, we compare the travel demand inferred from cellular network data to the municipality’s existing urban travel demand model as well as public transit tap-ins. The results for the small-scale dataset show that, with the proposed trip extraction methods, the recall (trip detection rate) is about 50% for short trips of 1-2 km, while it is 75–80% for trips of more than 5 km. Similarly, the recall also differs by a travel mode with more than 80% for public transit, 74% for car, but only 53% for bicycle and walking. After aggregating trips into an origin-destination matrix, the correlation is weak () using the original zoning used in the travel demand model with 189 zones, while it is significant with when aggregating to 24 zones. We find that the choice of the trip extraction method is crucial for the travel demand estimation as we find that the choice of the trip extraction method is crucial for the travel demandestimation as we find systematic differences in the resulting travel demand matrices using two different methods.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Samhällsbyggnadsteknik -- Transportteknik och logistik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Civil Engineering -- Transport Systems and Logistics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy