SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:liu-7165"
 

Sökning: onr:"swepub:oai:DiVA.org:liu-7165" > Molecular Dynamics ...

Molecular Dynamics Studies of Low-Energy Atom Impact Phenomena on Metal Surfaces during Crystal Growth

Adamovic, Dragan, 1973- (författare)
Linköpings universitet,Teoretisk Fysik,Tekniska högskolan
Münger, Peter (preses)
Linköpings universitet,Teoretisk Fysik,Tekniska högskolan
Michely, Thomas, Apl. Prof. (opponent)
Physikalisches Institut, RWTH-Aachen University
 (creator_code:org_t)
ISBN 9185523569
Institutionen för fysik, kemi och biologi, 2006
Engelska.
Serie: Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1028
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • It is a well-known fact in the materials science community that the use of low-energy atom impacts during thin film deposition is an effective tool for altering the growth behavior and for increasing the crystallinity of the films. However, the manner in which the incident atoms affect the growth kinetics and surface morphology is quite complicated and still not fully understood. This provides a strong incentive for further investigations of the interaction among incident atoms and surface atoms on the atomic scale. These impact-induced energetic events are non-equilibrium, transient processes which complete in picoseconds. The only accessible technique today which permits direct observation of these events is molecular dynamics (MD) simulations.This thesis deals with MD simulations of low-energy atom impact phenomena on metal surfaces during crystal growth. Platinum is chosen as a model system given that it has seen extended use as a model surface over the past few decades, both in experiments and simulations. In MD, the classical equations of motion are solved numerically for a set of interacting atoms. The atomic interactions are calculated using the embedded atom method (EAM). The EAM is a semi-empirical, pair-functional interatomic potential based on density functional theory. This potential provides a physical picture that includes many-atom effects while retaining computational efficiency needed for larger systems.Single adatoms residing on a surface constitute the smallest possible clusters and are the fundamental components controlling nucleation kinetics. Small two-dimensional clusters on a surface are the result of nucleation and are present during the early stages of growth. These surface structures are chosen as targets in the simulations (papers I and II) to provide further knowledge of the atomistic processes which occur during deposition, to investigate at which impact energies the different kinetic pathways open up, and how they may affect growth behavior. Some of the events observed are adatom scattering, dimer formation, cluster disruption, formation of three-dimensional clusters, and residual vacancy formation. Given the knowledge obtained, papers III and IV deal with growth of several layers with the aim to study the underlying mechanisms responsible for altering growth behavior and how the overall intra- and interlayer atomic migration can be controlled by low-energy atom impacts.

Ämnesord

NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Molecular dynamics simulations
Low energy Ion irradiation
Atomistic processes
Thin film growth
Physics
Fysik

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Adamovic, Dragan ...
Münger, Peter
Michely, Thomas, ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
Delar i serien
Linköping Studie ...
Av lärosätet
Linköpings universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy