SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:ltu-95602"
 

Sökning: onr:"swepub:oai:DiVA.org:ltu-95602" > Bioelectronic micro...

Bioelectronic microfluidic wound healing: a platform for investigating direct current stimulation of injured cell collectives

Shaner, Sebastian (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
Savelyeva, Anna (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
Kvartuh, Anja (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
visa fler...
Jedrusik, Nicole (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
Matter, Lukas (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
Leal, José (författare)
Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110 Freiburg, Germany,Albert-Ludwigs-Universität Freiburg,University of Freiburg
Asplund, Maria (författare)
Luleå tekniska universitet,Omvårdnad och medicinsk teknik,Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Brainlinks-Braintools Center, Georges-Köhler-Allee 201, 79110 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstr. 19, 79104 Freiburg, Germany; Department of Microtechnology and Nanoscience, Chalmers University of Technology, Kemivägen 9, 412 58 Gothenburg, Sweden,Luleå tekniska universitet (LTU),Luleå University of Technology (LTU),Albert-Ludwigs-Universität Freiburg,University of Freiburg,Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2023
2023
Engelska.
Ingår i: Lab on a Chip. - : Royal Society of Chemistry. - 1473-0197 .- 1473-0189. ; 23:6, s. 1531-1546
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Upon cutaneous injury, the human body naturally forms an electric field (EF) that acts as a guidance cue for relevant cellular and tissue repair and reorganization. However, the direct current (DC) flow imparted by this EF can be impacted by a variety of diseases. This work delves into the impact of DC stimulation on both healthy and diabetic in vitro wound healing models of human keratinocytes, the most prevalent cell type of the skin. The culmination of non-metal electrode materials and prudent microfluidic design allowed us to create a compact bioelectronic platform to study the effects of different sustained (12 hours galvanostatic DC) EF configurations on wound closure dynamics. Specifically, we compared if electrotactically closing a wound's gap from one wound edge (i.e., uni-directional EF) is as effective as compared to alternatingly polarizing both the wound's edges (i.e., pseudo-converging EF) as both of these spatial stimulation strategies are fundamental to the eventual translational electrode design and strategy. We found that uni-directional electric guidance cues were superior in group keratinocyte healing dynamics by enhancing the wound closure rate nearly three-fold for both healthy and diabetic-like keratinocyte collectives, compared to their non-stimulated respective controls. The motility-inhibited and diabetic-like keratinocytes regained wound closure rates with uni-directional electrical stimulation (increase from 1.0 to 2.8% h−1) comparable to their healthy non-stimulated keratinocyte counterparts (3.5% h−1). Our results bring hope that electrical stimulation delivered in a controlled manner can be a viable pathway to accelerate wound repair, and also by providing a baseline for other researchers trying to find an optimal electrode blueprint for in vivo DC stimulation.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Kirurgi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Surgery (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Annan medicinteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Other Medical Engineering (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Biomedicinsk laboratorievetenskap/teknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Biomedical Laboratory Science/Technology (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Medicinsk bioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Medical Biotechnology (hsv//eng)

Nyckelord

Medical Engineering
Medicinsk teknik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy