SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:mdh-49378"
 

Sökning: onr:"swepub:oai:DiVA.org:mdh-49378" > Probabilistic Calib...

Probabilistic Calibration of Building Energy Models : For Scalable and Detailed Energy Performance Assessment of District-Heated Multifamily Buildings

Lundström, Lukas, 1980- (författare)
Mälardalens högskola,Framtidens energi
Dahlquist, Erik, 1951- (preses)
Mälardalens högskola,Framtidens energi
Sasic, Angela (opponent)
Chalmers University of Technology
 (creator_code:org_t)
ISBN 9789174854732
Västerås : Mälardalen University, 2020
Engelska.
Serie: Mälardalen University Press Dissertations, 1651-4238 ; 318
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • There is a global need to reduce energy consumption and integrate a larger share of renewable energy production while meeting expectations for human well-being and economic growth. Buildings have a key role to play in this transition to more sustainable cities and communities.Building energy modeling (BEM) and simulation are needed to gain detailed knowledge ofthe heat flows and parameters that determine the thermal energy performance of a building. Remote sensing techniques have enabled the generation of geometrical representations of existing buildings on the scale of entire cities. However, parameters describing the thermal properties ofthe building envelope and the technical systems are usually not readily accessible in a digitized form and need to be inferred. Further, buildings are complex systems with indoor environmental conditions that vary dynamically under the stochastic influence of weather and occupant behavior and the availability of metering data is often limited. Consequently, robust inference is needed to handle high and time-varying uncertainty and a varying degree of data availability.This thesis starts with investigation of meteorological reanalyses, remote sensing and onsite metering data sources. Next, the developed dynamic and physics-based BEM, consisting of a thermal network and modeling procedures for the technical systems, passive heat gains and boundary conditions, is presented. Finally, the calibration framework is presented, including a method to transform a deterministic BEM into a fully probabilistic BEM, an iterated extended Kalman filtering algorithm and a probabilistic calibration procedure to infer uncertain parameters and incorporate prior knowledge.The results suggest that the proposed BEM is sufficiently detailed to provide actionable insights, while remaining identifiable given a sufficiently informative prior model. Such a prior model can be obtained based solely on knowledge of the underlying physical properties of the parameters, but also enables incorporation of more specific information about the building. The probabilistic calibration approach has the capability to combine evidence from both data and knowledge-based sources; this is necessary for robust inference given the often highly uncertain reality in which buildings operate.The contributions of this thesis bring us a step closer to producing models of existing buildings, on the scale of whole cities, that can simulate reality sufficiently well to gain actionable insights on thermal energy performance, enable buildings to act as active components of the energy system and ultimately increase the operational resilience of the built environment.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Nyckelord

Energy- and Environmental Engineering
energi- och miljöteknik

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy