SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:su-84774"
 

Sökning: onr:"swepub:oai:DiVA.org:su-84774" > Prioritizing Chemic...

LIBRIS Formathandbok  (Information om MARC21)
FältnamnIndikatorerMetadata
00003710naa a2200433 4500
001oai:DiVA.org:su-84774
003SwePub
008130102s2012 | |||||||||||000 ||eng|
024a https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-847742 URI
024a https://doi.org/10.1289/ehp.12053552 DOI
040 a (SwePub)su
041 a engb eng
042 9 SwePub
072 7a ref2 swepub-contenttype
072 7a art2 swepub-publicationtype
100a Arnot, Jon A.4 aut
2451 0a Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment
264 1b Environmental Health Perspectives,c 2012
338 a print2 rdacarrier
500 a AuthorCount:5;
520 a BACKGROUND: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. OBJECTIVES: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. METHODS: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. RESULTS: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. CONCLUSIONS: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner.
650 7a NATURVETENSKAPx Geovetenskap och miljövetenskapx Miljövetenskap0 (SwePub)105022 hsv//swe
650 7a NATURAL SCIENCESx Earth and Related Environmental Sciencesx Environmental Sciences0 (SwePub)105022 hsv//eng
650 7a NATURVETENSKAPx Biologix Ekologi0 (SwePub)106112 hsv//swe
650 7a NATURAL SCIENCESx Biological Sciencesx Ecology0 (SwePub)106112 hsv//eng
653 a exposure
653 a high throughput
653 a organic chemicals
653 a risk
653 a uncertainty analysis
700a Brown, Trevor N.4 aut
700a Wania, Frank4 aut
700a Breivik, Knut4 aut
700a McLachlan, Michael S.u Stockholms universitet,Institutionen för tillämpad miljövetenskap (ITM)4 aut0 (Swepub:su)mmcla
710a Stockholms universitetb Institutionen för tillämpad miljövetenskap (ITM)4 org
773t Journal of Environmental Health Perspectivesd : Environmental Health Perspectivesg 120:11, s. 1565-1570q 120:11<1565-1570x 0091-6765x 1552-9924
856u https://doi.org/10.1289/ehp.1205355
8564 8u https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-84774
8564 8u https://doi.org/10.1289/ehp.1205355

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy