SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:umu-174005"
 

Sökning: onr:"swepub:oai:DiVA.org:umu-174005" > Nanoscale hydration...

  • Cheng, Wei (författare)

Nanoscale hydration in layered manganese oxides

  • Artikel/kapitelEngelska2021

Förlag, utgivningsår, omfång ...

  • 2021-01-06
  • American Chemical Society (ACS),2021
  • electronicrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:umu-174005
  • https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174005URI
  • https://doi.org/10.1021/acs.langmuir.0c02592DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • Originally included in thesis in manuscript form.
  • Birnessite is a layered MnO2 mineral capable of intercalating nanometric water films in its bulk. With its variable distributions of Mn oxidation states (MnIV, MnIII, and MnII), cationic vacancies, and interlayer cationic populations, birnessite plays key roles in catalysis, energy storage solutions, and environmental (geo)chemistry. We here report the molecular controls driving the nanoscale intercalation of water in potassium-exchanged birnessite nanoparticles. From microgravimetry, vibrational spectroscopy, and X-ray diffraction, we find that birnessite intercalates no more than one monolayer of water per interlayer when exposed to water vapor at 25 °C, even near the dew point. Molecular dynamics showed that a single monolayer is an energetically favorable hydration state that consists of 1.33 water molecules per unit cell. This monolayer is stabilized by concerted potassium–water and direct water–birnessite interactions, and involves negligible water–water interactions. Using our composite adsorption–condensation–intercalation model, we predicted humidity-dependent water loadings in terms of water intercalated in the internal and adsorbed at external basal faces, the proportions of which vary with particle size. The model also accounts for additional populations condensed on and between particles. By describing the nanoscale hydration of birnessite, our work secures a path for understanding the water-driven catalytic chemistry that this important layered manganese oxide mineral can host in natural and technological settings.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Lindholm, JerryUmeå universitet,Kemiska institutionen(Swepub:umu)jeli0106 (författare)
  • Holmboe, MichaelUmeå universitet,Kemiska institutionen(Swepub:umu)miho0052 (författare)
  • Luong, N. TanUmeå universitet,Kemiska institutionen(Swepub:umu)ngng0029 (författare)
  • Shchukarev, AndreyUmeå universitet,Kemiska institutionen(Swepub:umu)ansh0001 (författare)
  • Ilton, Eugene S. (författare)
  • Hanna, Khalil (författare)
  • Boily, Jean-FrancoisUmeå universitet,Kemiska institutionen(Swepub:umu)jebo0010 (författare)
  • Umeå universitetKemiska institutionen (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Langmuir: American Chemical Society (ACS)37:2, s. 666-6740743-74631520-5827

Internetlänk

Hitta via bibliotek

  • Langmuir (Sök värdpublikationen i LIBRIS)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy