SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-108696"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-108696" > Applications of act...

Applications of active materials

Edqvist, Erik, 1975- (författare)
Uppsala universitet,Tillämpad materialvetenskap
Thornell, Greger, Docent (preses)
Uppsala universitet,Rymdtekniskt centrum,Mikrostrukturteknik
Lundberg, Bengt, Professor (preses)
Uppsala universitet,Hållfasthetslära
visa fler...
Jäger, Edwin, Docent (opponent)
Linköpings Universitet
visa färre...
 (creator_code:org_t)
ISBN 9789155476090
Uppsala : Acta Universitatis Upsaliensis, 2009
Engelska 77 s.
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 672
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Energy efficiency is a vital key component when designing and miniaturizing self sustained microsystems. The smaller the system, the smaller is the possibility to store enough stored energy for a long and continuous operational time. To move such a system in an energy efficient way, a piezoelectrical locomotion module consisting of four resonating cantilevers has been designed, manufactured and evaluated in this work. The combination of a suitable substrate, a multilayered piezoelectric material to reduce the voltage, and a resonating drive mechanism resulted in a low power demand. A manufacturing process for multilayer cantilever actuators made of P(VDF-TrFE) with aluminum electrodes on a substrate of flexible printed circuit board (FPC), has been developed. An important step in this process was the development of an etch recipe for dry etching the multilayer actuators in an inductive plasma equipment. Formulas for the quasi static tip deflection and resonance frequency of a multilayered cantilever, have been derived. Through theses, it was found that the multilayered structures should be deposited on the polymer side of the FPC in order to maximize the tip deflection. Both a large and a miniaturized locomotion module were manufactured and connected by wires to verify that the three legged motion principal worked to move the structures forward and backward, and turn it right and left. By touching and adding load, to a fourth miniaturized cantilever, its ability to act as a contact sensor and carry object was verified. The presented locomotion module is part of a multifunctional microsystem, intended to be energy efficient and powered by a solar panel with a total volume of less than 25 mm3 and weight 65 mg. The whole system, consisting of a solar cell, an infra red communication module, an integrated circuit for control, three capacitors for power regulating, the locomotion module and an FPC connecting the different modules, was surface mounted using a state of the art industrial facility. Two fully assembled systems could be programmed both through a test connector and through optical sensors in the multifunctional solar cell. One of these was folded together to the final configuration of a robot. However, the entire system could not be tested under full autonomous operating conditions. On the other hand, using wires, the locomotion module could be operated and used to move the entire system from a peak-to-peak voltage of 3.0 V.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering (hsv//eng)

Nyckelord

Energy efficient
microsystem
resonating cantilevers
microactuators
P(VDF-TrFE)
surface mounting assembly
multi layers
flexible printed circuit board
conveyer
three legged
Materials science
Teknisk materialvetenskap
materialvetenskap
Materials Science

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy