SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-445842"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-445842" > Numerical and exper...

Numerical and experimental investigations of elastic wave anisotropy in monomineral and polymineral rocks

bazargan, mohsen (författare)
motra, hem (författare)
almqvist, bjarne (författare)
visa fler...
piazolo, sandra (författare)
hieronymus, christoph (författare)
visa färre...
2020
2020
Engelska.
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • Seismic anisotropy is a key property to understand the structure of the crust and mantle. In this contribution, we investigate the influence of shape (morphological) preferred orientation (SPO), crystallographic preferred orientation (CPO) and the spatial distribution of grains on seismic anisotropy in rocks (Bazargan et al., 2018). A numerical toolset has been developed with COMSOL to investigate these effects numerically, which has been benchmarked analytically and against other numerical models. Numerical samples modelled in 2D and 3D can determine anisotropy, by measurements along different sample axes, using different geometrical setups and mineral compositions. This numerical tool can include a variety of mineral arrangements and propagate P and S waves from different directions to calculate anisotropy. Current numerical results confirm directly the relations between the structural framework of the rocks (foliation, lineation) and velocity anisotropy, shear wave splitting and shear wave polarisation. This has been proven numerically with the effects of layering, which represents foliation and lineation in 2D. One of the aims of this work is to apply the fundamental results and effects of an effective medium to improve our finite element method (FEM) toolbox to provide a numerical modelling tool for seismic data that have been collected in the field. Since the numerical and laboratory measurements are worked on together to verify the numerical results, to compare the models and explain the laboratory measurements have been conducted. Here we also present laboratory measurements of directional dependence of elastic waves velocity and shear wave splitting to the internal rock structure. In the experimental part of this study, we illustrate the contribution of microstructural parameters (grain sizes, SPO and microcracks) to the elastic anisotropy of relatively similar quartzites and granites. An objective with the laboratory measurements is to investigate the effect of grain size and its possible influence on elastic wave speed and potential scattering effects due to wavelength effects. Granites are the ones we use to investigate anisotropy related to SPO and CPO. Our experimental data consist of the measurements of elastic wave velocities (Vp, Vs 1 and Vs 2) at confining pressures up to 600 MPa (Bazargan et al., 2019). numerical modelling together with laboratory measurements are used to obtain a better understanding of the role of microstructures in elastic wave propagation and its anisotropy

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geofysik (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geophysics (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy