SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:DiVA.org:uu-486653"
 

Sökning: onr:"swepub:oai:DiVA.org:uu-486653" > Pore-scale characte...

Pore-scale characterization of residual phase remobilization in geological CO2 storage using X-ray microtomography and pore-network modelling

Moghadasi, Ramin (författare)
Uppsala universitet,Luft-, vatten- och landskapslära,Geohydrology
Goodarzi, Sepideh (författare)
Department of Earth Science and Engineering, Imperial College, London, United Kingdom
Zhang, Yihuai (författare)
James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
visa fler...
Foroughi, Sajjad (författare)
Department of Earth Science and Engineering, Imperial College, London, United Kingdom
R. McDougall, Steven (författare)
Institute of GeoEnergy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
Bijeljic, Branko (författare)
Department of Earth Science and Engineering, Imperial College, London, United Kingdom
J. Blunt, Martin (författare)
Department of Earth Science and Engineering, Imperial College, London, United Kingdom
Niemi, Auli (författare)
Uppsala universitet,Luft-, vatten- och landskapslära,Geohydrology
visa färre...
 (creator_code:org_t)
Engelska.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • In this study, the pore-scale characteristics of trapped CO2 remobilization under pressure depletion conditions were studied with the use of 3D X-ray microtomography and pore-network modelling. Three-dimensional X-ray microtomographic images of a sandstone sample with a voxel size of 3.83 mm were acquired from which a pore network was extracted. Experimental results show that trapped CO2 remobilization during pressure depletion is an intermittent process in nature, due to which the CO2 relative permeability is significantly reduced. This serves as a safety enhancing feature as it delays CO2 remobilization and migration. Ostwald ripening plays a significant role in the CO2 phase redistribution, which could potentially lead to remobilization even in the absence of pressure depletion. According to the pore network simulation results, weakly wetting conditions enhances the reconnection of the trapped CO2 ganglia, which in turn promotes the remobilization of the trapped phase. The simulation and experimental results agree in terms of the saturation increment needed to remobilize the CO2 – approximately 0.06 – and the pressure at which the CO2 connects – around 7 MPa. The findings of the current study provide valuable insights into the pore-scale aspects of trapped phase remobilization, a phenomenon that affects the fate of CO2 residual trapping in both the short and long term. 

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Annan geovetenskap och miljövetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Other Earth and Related Environmental Sciences (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Multidisciplinär geovetenskap (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geosciences, Multidisciplinary (hsv//eng)

Nyckelord

Geological CO2 storage
Pore-scale
Residual trapping
Gas remobilization
X-ray microtomography
Pore-network modelling

Publikations- och innehållstyp

vet (ämneskategori)
ovr (ämneskategori)

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy