SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/274648"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/274648" > Prediction of antib...

Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data.

Moradigaravand, Danesh (författare)
Palm, Martin (författare)
Gothenburg University,Göteborgs universitet,Institutionen för kemi och molekylärbiologi,CARe - Centrum för antibiotikaresistensforskning,Department of Chemistry and Molecular Biology,Centre for antibiotic resistance research, CARe
Farewell, Anne, 1961 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för kemi och molekylärbiologi,CARe - Centrum för antibiotikaresistensforskning,Department of Chemistry and Molecular Biology,Centre for antibiotic resistance research, CARe
visa fler...
Mustonen, Ville (författare)
Warringer, Jonas, 1973 (författare)
Gothenburg University,Göteborgs universitet,CARe - Centrum för antibiotikaresistensforskning,Institutionen för kemi och molekylärbiologi,Centre for antibiotic resistance research, CARe,Department of Chemistry and Molecular Biology
Parts, Leopold (författare)
visa färre...
 (creator_code:org_t)
2018-12-14
2018
Engelska.
Ingår i: PLoS computational biology. - : Public Library of Science (PLoS). - 1553-7358. ; 14:12
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The emergence of microbial antibiotic resistance is a global health threat. In clinical settings, the key to controlling spread of resistant strains is accurate and rapid detection. As traditional culture-based methods are time consuming, genetic approaches have recently been developed for this task. The detection of antibiotic resistance is typically made by measuring a few known determinants previously identified from genome sequencing, and thus requires the prior knowledge of its biological mechanisms. To overcome this limitation, we employed machine learning models to predict resistance to 11 compounds across four classes of antibiotics from existing and novel whole genome sequences of 1936 E. coli strains. We considered a range of methods, and examined population structure, isolation year, gene content, and polymorphism information as predictors. Gradient boosted decision trees consistently outperformed alternative models with an average accuracy of 0.91 on held-out data (range 0.81-0.97). While the best models most frequently employed gene content, an average accuracy score of 0.90 could be obtained using population structure information alone. Single nucleotide variation data were less useful, and significantly improved prediction only for two antibiotics, including ciprofloxacin. These results demonstrate that antibiotic resistance in E. coli can be accurately predicted from whole genome sequences without a priori knowledge of mechanisms, and that both genomic and epidemiological data can be informative. This paves way to integrating machine learning approaches into diagnostic tools in the clinic.

Ämnesord

NATURVETENSKAP  -- Biologi -- Mikrobiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Microbiology (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy