SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/305380"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/305380" > The temperature cha...

The temperature change shortcut: effects of mid-experiment temperature changes on the deformation of polycrystalline ice

Craw, L. (författare)
Treverrow, A. (författare)
Fan, S. (författare)
visa fler...
Peternell, Mark, 1974 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för geovetenskaper,Department of Earth Sciences
Cook, S. (författare)
McCormack, F. (författare)
Roberts, J. (författare)
visa färre...
 (creator_code:org_t)
2021-05-10
2021
Engelska.
Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 15:5, s. 2235-2250
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • It is vital to understand the mechanical properties of flowing ice to model the dynamics of ice sheets and ice shelves and to predict their behaviour in the future. We can increase our understanding of ice physical properties by performing deformation experiments on ice in laboratories and examining its mechanical and microstructural responses. However, natural conditions in ice sheets and ice shelves extend to low temperatures (<< -10 degrees C), and high octahedral strains (> 0.08), and emulating these conditions in laboratory experiments can take an impractically long time. It is possible to accelerate an experiment by running it at a higher temperature in the early stages and then lowering the temperature to meet the target conditions once the tertiary creep stage is reached. This can reduce total experiment run-time by > 1000 h; however it is not known whether this could affect the final strain rate or microstructure of the ice and potentially introduce a bias into the data. We deformed polycrystalline ice samples in uniaxial compression at -2 degrees C before lowering the temperature to either -7 or -10 degrees C, and we compared the results to constant-temperature experiments. Tertiary strain rates adjusted to the change in temperature very quickly (within 3% of the total experiment run-time), with no significant deviation from strain rates measured in constant-temperature experiments. In experiments with a smaller temperature step (-2 to -7 degrees C) there is no observable difference in the final microstructure between changing-temperature and constant-temperature experiments which could introduce a bias into experimental results. For experiments with a larger temperature step (-2 to -10 degrees C), there are quantifiable differences in the microstructure. These differences are related to different recrystallisation mechanisms active at -10 degrees C, which are not as active when the first stages of the experiment are performed at -2 degrees C. For studies in which the main aim is obtaining tertiary strain rate data, we propose that a mid-experiment temperature change is a viable method for reducing the time taken to run low-stress and low-temperature experiments in the laboratory.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geologi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geology (hsv//eng)
NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Naturgeografi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Physical Geography (hsv//eng)

Nyckelord

tertiary creep
evolution
quartz
size
ebsd
microstructure
software
texture
fabrics
rates
Physical Geography
Geology

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy