SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/313497"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/313497" > Deep Learning for R...

Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra─A Case Study in Microplastic Analyses

Brandt, Josef (författare)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
Mattsson, Karin (författare)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
Hassellöv, Martin, 1970 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för marina vetenskaper,Department of marine sciences
 (creator_code:org_t)
2021-11-22
2021
Engelska.
Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 93:49, s. 16360-16368
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Herein we report on a deep-learning method for the removal of instrumental noise and unwanted spectral artifacts in Fourier transform infrared (FTIR) or Raman spectra, especially in automated applications in which a large number of spectra have to be acquired within limited time. Automated batch workflows allowing only a few seconds per measurement, without the possibility of manually optimizing measurement parameters, often result in challenging and heterogeneous datasets. A prominent example of this problem is the automated spectroscopic measurement of particles in environmental samples regarding their content of microplastic (MP) particles. Effective spectral identification is hampered by low signal-to-noise ratios and baseline artifacts as, again, spectral post-processing and analysis must be performed in automated measurements, without adjusting specific parameters for each spectrum. We demonstrate the application of a simple autoencoding neural net for reconstruction of complex spectral distortions, such as high levels of noise, baseline bending, interferences, or distorted bands. Once trained on appropriate data, the network is able to remove all unwanted artifacts in a single pass without the need for tuning spectra-specific parameters and with high computational efficiency. Thus, it offers great potential for monitoring applications with a large number of spectra and limited analysis time with availability of representative data from already completed experiments. © 2021 The Authors. Published by American Chemical Society.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Oceanografi, hydrologi och vattenresurser (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Oceanography, Hydrology and Water Resources (hsv//eng)

Nyckelord

Automation
Deep learning
Fourier transform infrared spectroscopy
Parameter estimation
Raman scattering
Signal to noise ratio
Case-studies
Fourier transform infrared
Fourier transform Raman
Infrared and Raman spectra
Instrumental noise
Learning methods
Low qualities
Microplastics
Spectra's
Spectral artifacts
Computational efficiency

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Brandt, Josef
Mattsson, Karin
Hassellöv, Marti ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Geovetenskap och ...
och Oceanografi hydr ...
Artiklar i publikationen
Analytical Chemi ...
Av lärosätet
Göteborgs universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy