SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:lup.lub.lu.se:2ff1683f-4ae7-4131-8fb3-7d6e563ab5b8"
 

Sökning: onr:"swepub:oai:lup.lub.lu.se:2ff1683f-4ae7-4131-8fb3-7d6e563ab5b8" > Impact of SPECT cor...

Impact of SPECT corrections on 3D-dosimetry for liver transarterial radioembolization using the patient relative calibration methodology

Pacilio, Massimiliano (författare)
Azienda Ospedaliera San Camillo Forlanini
Ferrari, Mahila (författare)
European Institute of Oncology
Chiesa, Carlo (författare)
Istituto Nazionale dei Tumori
visa fler...
Lorenzon, Leda (författare)
Sapienza University of Rome
Mira, Marta (författare)
University of Milan
Botta, Francesca (författare)
European Institute of Oncology
Becci, Domenico (författare)
Sapienza University of Rome
Torres, Leonel Alberto (författare)
Center of Isotopes
Coca Perez, Marco (författare)
Imaging Center Medscan-Concepciòn
Vergara Gil, Alex (författare)
Center of Isotopes
Basile, Chiara (författare)
Azienda Ospedaliera San Camillo Forlanini
Ljungberg, Michael (författare)
Lund University,Lunds universitet,Medicinsk strålningsfysik, Lund,Sektion V,Institutionen för kliniska vetenskaper, Lund,Medicinska fakulteten,Medical Radiation Physics, Lund,Section V,Department of Clinical Sciences, Lund,Faculty of Medicine
Pani, Roberto (författare)
Sapienza University of Rome
Cremonesi, Marta (författare)
European Institute of Oncology
visa färre...
 (creator_code:org_t)
2016-06-10
2016
Engelska 12 s.
Ingår i: Medical Physics. - : Wiley. - 0094-2405. ; 43:7, s. 4053-4064
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Purpose: Many centers aim to plan liver transarterial radioembolization (TARE) with dosimetry, even without CT-based attenuation correction (AC), or with unoptimized scatter correction (SC) methods. This work investigates the impact of presence vs absence of such corrections, and limited spatial resolution, on 3D dosimetry for TARE. Methods: Three voxelized phantoms were derived from CT images of real patients with different body sizes. Simulations of 99mTc-SPECT projections were performed with the SIMIND code, assuming three activity distributions in the liver: uniform, inside a "liver's segment," or distributing multiple uptaking nodules ("nonuniform liver"), with a tumoral liver/healthy parenchyma ratio of 5:1. Projection data were reconstructed by a commercial workstation, with OSEM protocol not specifically optimized for dosimetry (spatial resolution of 12.6 mm), with/without SC (optimized, or with parameters predefined by the manufacturer; dual energy window), and with/without AC. Activity in voxels was calculated by a relative calibration, assuming identical microspheres and 99mTc-SPECT counts spatial distribution. 3D dose distributions were calculated by convolution with 90Y voxel S-values, assuming permanent trapping of microspheres. Cumulative dose-volume histograms in lesions and healthy parenchyma from different reconstructions were compared with those obtained from the reference biodistribution (the "gold standard," GS), assessing differences for D95%, D70%, and D50% (i.e., minimum value of the absorbed dose to a percentage of the irradiated volume). γ tool analysis with tolerance of 3%/13 mm was used to evaluate the agreement between GS and simulated cases. The influence of deep-breathing was studied, blurring the reference biodistributions with a 3D anisotropic gaussian kernel, and performing the simulations once again. Results: Differences of the dosimetric indicators were noticeable in some cases, always negative for lesions and distributed around zero for parenchyma. Application of AC and SC reduced systematically the differences for lesions by 5%-14% for a liver segment, and by 7%-12% for a nonuniform liver. For parenchyma, the data trend was less clear, but the overall range of variability passed from -10%/40% for a liver segment, and -10%/20% for a nonuniform liver, to -13%/6% in both cases. Applying AC, SC with preset parameters gave similar results to optimized SC, as confirmed by γ tool analysis. Moreover, γ analysis confirmed that solely AC and SC are not sufficient to obtain accurate 3D dose distribution. With breathing, the accuracy worsened severely for all dosimetric indicators, above all for lesions: with AC and optimized SC, -38%/-13% in liver's segment, -61%/-40% in the nonuniform liver. For parenchyma, D50% resulted always less sensitive to breathing and sub-optimal correction methods (difference overall range: -7%/13%). Conclusions: Reconstruction protocol optimization, AC, SC, PVE and respiratory motion corrections should be implemented to obtain the best possible dosimetric accuracy. On the other side, thanks to the relative calibration, D50% inaccuracy for the healthy parenchyma from absence of AC was less than expected, while the optimization of SC was scarcely influent. The relative calibration therefore allows to perform TARE planning, basing on D50% for the healthy parenchyma, even without AC or with suboptimal corrections, rather than rely on nondosimetric methods.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Annan klinisk medicin (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Other Clinical Medicine (hsv//eng)
NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)

Nyckelord

3D dosimetry
Monte Carlo
radioembolization
SPECT

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy