SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:lup.lub.lu.se:efcc8a37-e688-4703-88d5-df2ea91e2080"
 

Search: id:"swepub:oai:lup.lub.lu.se:efcc8a37-e688-4703-88d5-df2ea91e2080" > Contrasting respons...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Contrasting responses of woody and herbaceous vegetation to altered rainfall characteristics in the Sahel

Verbruggen, Wim (author)
Ghent University,University of Copenhagen
Schurgers, Guy (author)
University of Copenhagen
Horion, Stephanie (author)
University of Copenhagen
show more...
Ardö, Jonas (author)
Lund University,Lunds universitet,Institutionen för naturgeografi och ekosystemvetenskap,Naturvetenskapliga fakulteten,Dept of Physical Geography and Ecosystem Science,Faculty of Science
Bernardino, Paulo N. (author)
Wageningen University,Catholic University of Leuven
Cappelaere, Bernard (author)
Laboratoire HydroSciences Montpellier
Demarty, Jerome (author)
Laboratoire HydroSciences Montpellier
Fensholt, Rasmus (author)
University of Copenhagen
Kergoat, Laurent (author)
Université Paul Sabatier
Sibret, Thomas (author)
Ghent University
Tagesson, Torbern (author)
Lund University,Lunds universitet,Institutionen för naturgeografi och ekosystemvetenskap,Naturvetenskapliga fakulteten,Dept of Physical Geography and Ecosystem Science,Faculty of Science,University of Copenhagen
Verbeeck, Hans (author)
Ghent University
show less...
 (creator_code:org_t)
2021-01-07
2021
English 17 s.
In: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 18:1, s. 77-93
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Dryland ecosystems are a major source of land cover, account for about 40% of Earth's terrestrial surface and net primary productivity, and house more than 30% of the human population. These ecosystems are subject to climate extremes (e.g. large-scale droughts and extreme floods) that are projected to increase in frequency and severity under most future climate scenarios. In this modelling study we assessed the impact of single years of extreme (high or low) rainfall on dryland vegetation in the Sahel. The magnitude and legacy of these impacts were quantified on both the plant functional type and the ecosystem levels. In order to understand the impact of differences in the rainfall distribution over the year, these rainfall anomalies were driven by changing either rainfall intensity, event frequency or rainy-season length. The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) dynamic vegetation model was parameterized to represent dryland plant functional types (PFTs) and was validated against flux tower measurements across the Sahel. Different scenarios of extreme rainfall were derived from existing Sahel rainfall products and applied during a single year of the model simulation timeline. Herbaceous vegetation responded immediately to the different scenarios, while woody vegetation had a weaker and slower response, integrating precipitation changes over a longer timeframe. An increased season length had a larger impact than increased intensity or frequency, while impacts of decreased rainfall scenarios were strong and independent of the season characteristics. Soil control on surface water balance explains these contrasts between the scenarios. None of the applied disturbances caused a permanent vegetation shift in the simulations. Dryland ecosystems are known to play a dominant role in the trend and variability of the global terrestrial CO2 sink. We showed that single extremely dry and wet years can have a strong impact on the productivity of drylands ecosystems, which typically lasts an order of magnitude longer than the duration of the disturbance. Therefore, this study sheds new light on potential drivers and mechanisms behind this variability.

Subject headings

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Naturgeografi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Physical Geography (hsv//eng)

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view