SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:prod.swepub.kib.ki.se:140023014"
 

Sökning: onr:"swepub:oai:prod.swepub.kib.ki.se:140023014" > Predicting prolonge...

Predicting prolonged sick leave among trauma survivors

von Oelreich, E (författare)
Karolinska Institutet
Eriksson, M (författare)
Karolinska Institutet
Brattstrom, O (författare)
Karolinska Institutet
visa fler...
Discacciati, A (författare)
Karolinska Institutet
Strommer, L (författare)
Karolinska Institutet
Oldner, A (författare)
Karolinska Institutet
Larsson, E (författare)
Karolinska Institutet
visa färre...
 (creator_code:org_t)
2019-01-11
2019
Engelska.
Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 58-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Many survivors after trauma suffer from long-term morbidity. The aim of this observational cohort study was to develop a prognostic prediction tool for early assessment of full-time sick leave one year after trauma. Potential predictors were assessed combining individuals from a trauma register with national health registers. Two models were developed using logistic regression and stepwise backward elimination. 4458 individuals were included out of which 488 were on sick leave full-time 12 months after the trauma. One comprehensive and one simplified model were developed including nine and seven predictors respectively. Both models showed excellent discrimination (AUC 0.81). The comprehensive model had very good calibration, and the simplified model good calibration. Prediction models can be used to assess post-trauma sick leave using injury-related variables as well as factors not related to the trauma per se. Among included variables, pre-injury sick leave was the single most important predictor for full-time sick leave one year after trauma. These models could facilitate a more efficient use of resources, targeting groups for follow-up interventions to improve outcome. External validation is necessary in order to evaluate generalizability.

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy