SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:research.chalmers.se:47d97285-f1a7-4e29-8fb7-8f1e1bde7f16"
 

Sökning: onr:"swepub:oai:research.chalmers.se:47d97285-f1a7-4e29-8fb7-8f1e1bde7f16" > Gasoline engine per...

Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry

Franken, Tim (författare)
Brandenburgische Technische Universität Cottbus-Senftenberg,Brandenburg University of Technology Cottbus-Senftenberg
Mauss, Fabian (författare)
Brandenburgische Technische Universität Cottbus-Senftenberg,Brandenburg University of Technology Cottbus-Senftenberg
Seidel, Lars (författare)
visa fler...
Gern, Maike Sophie (författare)
Technische Universität Berlin
Kauf, Malte (författare)
Technische Universität Berlin
Matrisciano, Andrea, 1986 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Kulzer, Andre Casal (författare)
visa färre...
 (creator_code:org_t)
2020-07-04
2020
Engelska.
Ingår i: International Journal of Engine Research. - : SAGE Publications. - 1468-0874 .- 2041-3149. ; 21:10, s. 1857-1877
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • This work presents the assessment of direct water injection in spark-ignition engines using single cylinder experiments and tabulated chemistry-based simulations. In addition, direct water injection is compared with cooled low-pressure exhaust gas recirculation at full load operation. The analysis of the two knock suppressing and exhaust gas cooling methods is performed using the quasi-dimensional stochastic reactor model with a novel dual fuel tabulated chemistry model. To evaluate the characteristics of the autoignition in the end gas, the detonation diagram developed by Bradley and co-workers is applied. The single cylinder experiments with direct water injection outline the decreasing carbon monoxide emissions with increasing water content, while the nitrogen oxide emissions indicate only a minor decrease. The simulation results show that the engine can be operated at lambda = 1 at full load using water-fuel ratios of up to 60% or cooled low-pressure exhaust gas recirculation rates of up to 30%. Both technologies enable the reduction of the knock probability and the decrease in the catalyst inlet temperature to protect the aftertreatment system components. The strongest exhaust temperature reduction is found with cooled low-pressure exhaust gas recirculation. With stoichiometric air-fuel ratio and water injection, the indicated efficiency is improved to 40% and the carbon monoxide emissions are reduced. The nitrogen oxide concentrations are increased compared to the fuel-rich base operating conditions and the nitrogen oxide emissions decrease with higher water content. With stoichiometric air-fuel ratio and exhaust gas recirculation, the indicated efficiency is improved to 43% and the carbon monoxide emissions are decreased. Increasing the exhaust gas recirculation rate to 30% drops the nitrogen oxide emissions below the concentrations of the fuel-rich base operating conditions.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Kemiska processer (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Chemical Process Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Annan kemiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Other Chemical Engineering (hsv//eng)

Nyckelord

stochastic reactor model
efficiency
emissions
spark-ignition engine
exhaust gas recirculation
Water injection

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy