SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:research.chalmers.se:4dd78c18-c210-4036-9eb6-167095831a5d"
 

Sökning: onr:"swepub:oai:research.chalmers.se:4dd78c18-c210-4036-9eb6-167095831a5d" > Optimal design and ...

Optimal design and operation of maritime energy systems based on renewable methanol and closed carbon cycles

Thaler, Bernhard (författare)
Kanchiralla, Fayas Malik, 1989 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Posch, Stefan (författare)
visa fler...
Pirker, Gerhard (författare)
Wimmer, Andreas (författare)
Technische Universität Graz
Brynolf, Selma, 1984 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Wermuth, Nicole (författare)
visa färre...
 (creator_code:org_t)
Elsevier BV, 2022
2022
Engelska.
Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 269
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The phasing out of fossil fuels in the shipping sector is of key importance for reducing greenhouse gas emissions. Synthetic fuels based on renewable energy are a promising option for a sustainable maritime sector, with renewable methanol being one of the most widely considered energy carriers. However, the availability of renewable methanol is still limited and the costs associated with it are significantly higher than for conventional fuels, also because fuel synthesis must rely on carbon dioxide as a resource. Through the use of onboard carbon capture, the release of carbon dioxide during combustion can be avoided, and this closed cycle reduces the need for carbon sources. This paper investigates such a scenario by analyzing overall ship energy systems that use internal combustion engines with connected pre-combustion and post-combustion carbon capture technologies. The effect of these technologies on the techno-economic performance of a fully renewable energy system is investigated by setting up a mixed-integer optimization framework for the optimal design and operation of ship propulsion systems. The propulsion demand for the chosen case study consists of a typical operational profile of a ferry operating in the Baltic Sea. Comparison of the capture cases to a system solely based on renewable methanol reveals significant cost advantages of the closed carbon cycle systems. The baseline scenario has nearly 20% lower annual costs, with total capture rates of 90% in the post-combustion case and around 40% in the pre-combustion case. An extensive sensitivity analysis shows that these cost advantages are robust against various technological and economic boundary conditions. In the pre-combustion case, process heat demand reduction in combination with increased engine heat supply might enable higher capture rates beyond 90%. The results indicate that combining renewable fuels with onboard carbon capture creates opportunities for cost-effective, sustainable shipping.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Industriell bioteknik -- Bioenergi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Industrial Biotechnology -- Bioenergy (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)

Nyckelord

Sustainable shipping
Carbon capture
Energy system optimization
Renewable fuels
Ship energy system

Publikations- och innehållstyp

art (ämneskategori)
ref (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy