SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L4X0:1653 6363 "

Search: L4X0:1653 6363

  • Result 1-10 of 96
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Muchanga, Americo Francisco, 1968- (author)
  • Interdomain Traffic Engineering and Faster Restoration in Optical Networks
  • 2006
  • Doctoral thesis (other academic/artistic)abstract
    • Internet traffic has surpassed voice traffic and is dominating in transmission networks. The Internet Protocol (IP) is now being used to encapsulate various kinds of services. The new services have different requirements than the initial type of traffic that was carried by the Internet network and IP. Interactive services such as voice and video require paths than can guarantee some bandwidth level, minimum delay and jitter. In addition service providers need to be able to improve the performance of their networks by having an ability to steer the traffic along the less congested links or paths, thus balancing the load in a uniform way as a mechanism to provide differentiated service quality.This needs to be provided not only within their domains but also along paths that might traverse more than one domain. For this to be possible changes have been proposed and some are being applied to provide quality of service (QoS) and traffic engineering (TE) within and between domains.Because data networks now carry critical data and there are new technologies that enable providers to carry huge amount of traffic, it is important to have mechanisms to safeguard against failures that can render the network unavailable.In this thesis we propose and develop mechanisms to enable interdomain traffic engineering as well as to speed up the restoration time in optical transport networks. We propose a mechanism, called abstracted path information, that enable peering entities to exchange just enough information to engage in QoS and TE operations without divulging all the information about the internal design of the network. We also extend BGP to carry the abstracted information. Our simulations show that BGP could still deliver the same performance with the abstracted information.In this thesis we also develop a method of classifying failures of links or paths. To improve the restoration time we propose that common failures be classified and assigned error type numbers and we develop a mechanism for interlayer communication and faster processing of signalling messages that are used to carry notification signals. Additionally we develop a mechanism of exchanging the failure information between layers through the use of service primitives; that way we can speed up the restoration process. Finally we simulate the developed mechanism for a 24 node Pan American optical transport network.
  •  
2.
  • Cakici, Baki, 1984- (author)
  • Disease surveillance systems
  • 2011
  • Licentiate thesis (other academic/artistic)abstract
    • Recent advances in information and communication technologies have made the development and operation of complex disease surveillance systems technically feasible, and many systems have been proposed to interpret diverse data sources for health-related signals. Implementing these systems for daily use and efficiently interpreting their output, however, remains a technical challenge. This thesis presents a method for understanding disease surveillance systems structurally, examines four existing systems, and discusses the implications of developing such systems. The discussion is followed by two papers. The first paper describes the design of a national outbreak detection system for daily disease surveillance. It is currently in use at the Swedish Institute for Communicable Disease Control. The source code has been licenced under GNU v3 and is freely available. The second paper discusses methodological issues in computational epidemiology, and presents the lessons learned from a software development project in which a spatially explicit micro-meso-macro model for the entire Swedish population was built based on registry data.
  •  
3.
  • Abbas, Haider, 1979- (author)
  • Options-Based Security-Oriented Framework for Addressing Uncerainty Issues in IT Security
  • 2010
  • Doctoral thesis (other academic/artistic)abstract
    • Continuous development and innovation in Information Technology introduces novel configuration methods, software development tools and hardware components. This steady state of flux is very desirable as it improves productivity and the overall quality of life in societies. However, the same phenomenon also gives rise to unseen threats, vulnerabilities and security concerns that are becoming more critical with the passage of time. As an implication, technological progress strongly impacts organizations’ existing information security methods, policies and techniques, making obsolete existing security measures and mandating reevaluation, which results in an uncertain IT infrastructure. In order to address these critical concerns, an options-based reasoning borrowed from corporate finance is proposed and adapted for evaluation of security architecture and decision- making to handle them at organizational level. Options theory has provided significant guidance for uncertainty management in several domains, such as Oil & Gas, government R&D and IT security investment projects. We have applied options valuation technique in a different context to formalize optimal solutions in uncertain situations for three specific and identified uncertainty issues in IT security. In the research process, we formulated an adaptation model for expressing options theory in terms useful for IT security which provided knowledge to formulate and propose a framework for addressing uncertainty issues in information security. To validate the efficacy of this proposed framework, we have applied this approach to the SHS (Spridnings- och Hämtningssystem) and ESAM (E-Society) systems used in Sweden. As an ultimate objective of this research, we intend to develop a solution that is amenable to automation for the three main problem areas caused by technological uncertainty in information security: i) dynamically changing security requirements, ii) externalities caused by a security system, iii) obsoleteness of evaluation. The framework is general and capable of dealing with other uncertainty management issues and their solutions, but in this work we primarily deal with the three aforementioned uncertainty problems. The thesis presents an in-depth background and analysis study for a proposed options-based security-oriented framework with case studies for SHS and ESAM systems. It has also been assured that the framework formulation follows the guidelines from industry best practices criteria/metrics. We have also proposed how the whole process can be automated as the next step in development.
  •  
4.
  • Ahmad, Waqar (author)
  • Core Switching Noise for On-Chip 3D Power Distribution Networks
  • 2012
  • Doctoral thesis (other academic/artistic)abstract
    • Reducing the interconnect size with each technology node and increasing speed with each generation increases IR-drop and Ldi/dt noise. In addition to this, the drive for more integration increases the average current requirement for modern ULSI design. Simultaneous switching of core logic blocks and I/O drivers produces large current transients due to power distribution network parasitics at high clock frequency. The current transients are injected into the power distribution planes thereby inducing noise in the supply voltage. The part of the noise that is caused by switching of the internal logic load is core switching noise. The core logic switches at much higher speed than driver speed whereas the package inductance is less than the on-chip inductance in modern BGA packages. The core switching noise is currently gaining more attention for three-dimensional integrated circuits where on-chip inductance is much higher than the board and package inductance due to smaller board, and package. The switching noise of the driver is smaller than the core switching noise due to small driver size and reduced capacitance associated with short on-board wires for three-dimensional integrated circuits. The load increases with the addition of each die. The power distribution TSV pairs to supply each extra die also introduce additional parasitic. The core switching noise may propagate through substrate and consequently through interconnecting TSVs to different dies in heterogeneous integrated system. Core switching noise may lead to decreased device drive capability, increased gate delays, logic errors, and reduced noise margins. The actual behavior of the on-chip load is not well known in the beginning of the design cycle whereas altering the design during later stages is not cost effective. The size of a three-dimensional power distribution network may reach billions of nodes with the addition of dies in a vertical stack. The traditional tools may run out of time and memory during simulation of a three-dimensional power distribution network whereas, the CAD tools for the analysis of 3D power distribution network are in the process of evolution. Compact mathematical models for the estimation of core switching noise are necessary in order to overcome the power integrity challenges associated with the 3D power distribution network design. This thesis presents three different mathematical models to estimate core switching noise for 3D stacked power distribution networks. A time-domain-based mathematical model for the estimation of design parameters of a power distribution TSV pair is also proposed. Design guidelines for the estimation of optimum decoupling capacitance based on flat output impedance are also proposed for each stage of the vertical chain of power distribution TSV pairs. A mathematical model for tradeoff between TSV resistance and amount of decoupling capacitance on each DRAM die is proposed for a 3D-DRAM-Over-Logic system. The models are developed by following a three step approach: 1) design physical model, 2) convert it to equivalent electrical model, and 3) formulate the mathematical model based on the electrical model. The accuracy, speed and memory requirement of the proposed mathematical model is compared with equivalent Ansoft Nexxim models.
  •  
5.
  • Al Khatib, Iyad, 1975- (author)
  • Performance Analysis of Application-Specific Multicore Systems on Chip
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • The last two decades have witnessed the birth of revolutionary technologies in data communications including wireless technologies, System on Chip (SoC), Multi Processor SoC (MPSoC), Network on Chip (NoC), and more. At the same time we have witnessed that performance does not always keep pace with expectations in many services like multimediaservices and biomedical applications. Moreover, the IT market has suffered from some crashes. Hence, this triggered us to think of making use of available technologies and developing new ones so that the performance level is suitable for given applications and services. In the medical field, from a statistical viewpoint, the biggest diseases in number of deaths are heart diseases, namely Cardiovascular Disease (CVD) and Stroke. The application with the largest market for CVD is the electrocardiogram (ECG/EKG) analysis. According to the World Health Organization (WHO) report in 2003, 29.2% of global deaths are due to CVD and Stroke, half of which could be prevented if there was proper monitoring. We found in the new advance in microelectronics, NoC, SoC, and MPSoC, a chance of a solution for such a big problem. We look at the communication technologies, wireless networks, and MPSoC and realize that many projects can be founded, and they may affect people's lives positively, as for example, curing people more rapidly, as well as homecare of such large scale diseases. These projects have a medical impact as well as economic and social impacts. The intention is to use performance analysis of interconnected microelectronic systems and combine it with MPSoC and NoC technologies in order to evolve to new systems on chip that may make a difference. Technically, we aim at rendering more computations in less time, on a chip with smaller volume, and with less expense. The performance demand and the vision of having a market success, i.e. contributing to lower healthcare costs, pose many challenges on the hardware/software co-design to meet these goals. This calls upon the development of new integrated circuits featuring increased energy efficiency while providing higher computation capabilities, i.e. better performance. The biomedical application of ECG analysis is an ideal target for an application-specific SoC implementation. However, new 12-lead ECG analyses algorithms are needed to meet the aforementioned goals. In this thesis, we present two novel algorithms for ECG analysis, namely the Autocorrelation-Function (ACF) based algorithm and the Fast Fourier Transform (FFT) based algorithm. In this respect, we explore the design space by analyzing different hardware and software architectures. As a result, we realize a design with twelve processors that can compute 3.5 million arithmetic computations and respect the real time hard deadline for our biomedical application (3.5-4seconds), and that can deploy the ACF-based and FFT-based algorithms. Then, we investigate the configuration space looking for the most effective solution, performance and energy-wise. Consequently, we present three interconnect architectures (Single Bus, Full Crossbar, and Partial Crossbar) and compare them with existing solutions. The sampling frequencies of 2.2 KHz and 4 KHz, with 12 DSPs, are found to be the critical points for our Shared-Bus design and Crossbar architecture, respectively. We also show how our performance analysis methods can be applied to such a field of SoC design and with a specific purpose application in order to converge to a solution that is acceptable from a performance viewpoint, meets the real-time demands, and can be implemented with the present technologies while at the same time paving the way for easier and faster development. In order to connect our MPSoC solution to communication networks to transmit the medical results to a healthcare center, we come up with new protocols that will allow the integration of multiple networks on chips in a communication network. Finally, we present a methodology for HW/SW Codesign for application-specific systems (with focus on biomedical applications) that require a large number of computations since this will foster the convergence to solutions that are acceptable from a performance point of view.
  •  
6.
  • Al-Shishtawy, Ahmad, 1978- (author)
  • Enabling and Achieving Self-Management for Large Scale Distributed Systems : Platform and Design Methodology for Self-Management
  • 2010
  • Licentiate thesis (other academic/artistic)abstract
    • Autonomic computing is a paradigm that aims at reducing administrative overhead by using autonomic managers to make applications self-managing. To better deal with large-scale dynamic environments; and to improve scalability, robustness, and performance; we advocate for distribution of management functions among several cooperative autonomic managers that coordinate their activities in order to achieve management objectives. Programming autonomic management in turn requires programming environment support and higher level abstractions to become feasible. In this thesis we present an introductory part and a number of papers that summaries our work in the area of autonomic computing. We focus on enabling and achieving self-management for large scale and/or dynamic distributed applications. We start by presenting our platform, called Niche, for programming self-managing component-based distributed applications. Niche supports a network-transparent view of system architecture simplifying designing application self-* code.  Niche provides a concise and expressive API for self-* code. The implementation of the framework relies on scalability and robustness of structured overlay networks. We have also developed a distributed file storage service, called YASS, to illustrate and evaluate Niche. After introducing Niche we proceed by presenting a methodology and design space for designing the management part of a distributed self-managing application in a distributed manner. We define design steps, that includes partitioning of management functions and orchestration of multiple autonomic managers. We illustrate the proposed design methodology by applying it to the design and development of an improved version of our distributed storage service YASS as a case study. We continue by presenting a generic policy-based management framework which has been integrated into Niche. Policies are sets of rules that govern the system behaviors and reflect the business goals or system management objectives. The policy based management is introduced to simplify the management and reduce the overhead, by setting up policies to govern system behaviors. A prototype of the framework is presented and two generic policy languages (policy engines and corresponding APIs), namely SPL and XACML, are evaluated using our self-managing file storage application YASS as a case study. Finally, we present a generic approach to achieve robust services that is based on finite state machine replication with dynamic reconfiguration of replica sets. We contribute a decentralized algorithm that maintains the set of resource hosting service replicas in the presence of churn. We use this approach to implement robust management elements as robust services that can operate despite of churn.  
  •  
7.
  • Amin, Yasar (author)
  • Printable Green RFID Antennas for Embedded Sensors
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • In the recent years, radio-frequency identification (RFID) technology has been widely integrated into modern society applications, ranging from barcode successor to retail supply chain, remote monitoring, detection and healthcare, for instance. In general, an RFID tag or transponder is composed of an antenna and an application-specific integrated circuit chip. In a passive UHF RFID system (which is the focus of presented research), the communication between the transponder tag and the reader is established by modulating the radar cross section (RCS) of the transponder tag. The need for flexible RFID tags has recently been increased enormously; particularly the RFID tags for the UHF band ensure the widest use but in the meantime face considerable challenges of cost, reliability and environmental friendliness.The multidimensional focus of the aforementioned research encompasses the production of low-cost and reliable RFID tags. The state-of-the-art fabrication methods and materials for proposed antennas are evaluated in order to surmount the hurdles for realization of flexible green electronics. Moreover, this work addresses the new rising issues interrelated to the field of economic and eco-friendly tags comprising of paper substrate. Paper substrates offer numerous advantages for manufacturing RFID tags, not only is paper extensively available, and inexpensive; it is lightweight, recyclable and can be rolled or folded into 3D configurations.The most important aspect of an RFID system's performance is the reading range. In this research several pivotal challenges for item-level tagging, are resolved by evolving novel structures of progressive meander line, quadrate bowtie and rounded corner bowtie antennas in order to maximize the reading distance with a prior selected microchip under the various constraints (such as limited antenna size, specific antenna impedance, radiation pattern requirements). This approach is rigorously evolved for the realization of innovative RFID tag antenna which has incorporated humidity sensor functionality along with calibration mechanism due to distinctiveness of its structural behavior which will be an optimal choice for future ubiquitous wireless sensor network (WSN) modules.The RFID market has grown in a two-dimensional trend, one side constitutes standalone RFID systems. On the other side, more ultramodern approach is paving its way, in which RFID needs to be integrated with broad operational array of distinct applications for performing different functions including sensors, navigation, broadcasting, and personal communication, to mention a few. Using different antennas to include all communication bands is a straightforward approach, but at the same time, it leads to increase cost, weight, more surface area for installation, and above all electromagnetic compatibility issues. The indicated predicament is solved by realization of proposed single wideband planar spirals and sinuous antennas which covers several bands from 0.8-3.0GHz. These antennas exhibit exceptional performance throughout the operational range of significance, thus paving the way for developing eco-friendly multi-module RF industrial solutions.
  •  
8.
  • Ardelius, John, 1978- (author)
  • On the Performance Analysis of Large Scale, Dynamic, Distributed and Parallel Systems.
  • 2013
  • Doctoral thesis (other academic/artistic)abstract
    • Evaluating the performance of large distributed applications is an important and non-trivial task. With the onset of Internet wide applications there is an increasing need to quantify reliability, dependability and performance of these systems, both as a guide in system design as well as a means to understand the fundamental properties of large-scale distributed systems. Previous research has mainly focused on either formalised models where system properties can be deduced and verified using rigorous mathematics or on measurements and experiments on deployed applications. Our aim in this thesis is to study models on an abstraction level lying between the two ends of this spectrum. We adopt a model of distributed systems inspired by methods used in the study of large scale system of particles in physics and model the application nodes as a set of interacting particles each with an internal state whose actions are specified by the application program. We apply our modeling and performance evaluation methodology to four different distributed and parallel systems. The first system is the distributed hash table (DHT) Chord running in a dynamic environment.  We study the system under two scenarios. First we study how performance (in terms of lookup latency) is affectedon a network with finite communication latency. We show that an average delay in conjunction with other parameters describing changes in the network (such as timescales for network repair and join and leave processes)induces fundamentally different system performance. We also verify our analytical predictions via simulations.In the second scenario we introduce network address translators (NATs) to the network model. This makes the overlay topology non-transitive and we explore the implications of this fact to various performance metrics such as lookup latency, consistency and load balance. The latter analysis is mainly simulation based.Even though these two studies focus on a specific DHT, many of our results can easily be translated to other similar ring-based DHTs with long-range links, and the same methodology can be applied evento DHT's based on other geometries.The second type of system studied is an unstructured gossip protocol running a distributed version of the famous Belman-Ford algorithm. The algorithm, called GAP, generates a spanning tree over the participating nodes and the question we set out to study is how reliable this structure is(in terms of generating accurate aggregate values at the root)  in the presence of node churn. All our analytical results are also verified  using simulations.The third system studied is a content distribution network (CDN) of interconnected caches in an aggregation access network. In this model, content which sits at the leaves of the cache hierarchy tree, is requested by end users. Requests can then either be served by the first cache level or sent further up the tree. We study the performance of the whole system under two cache eviction policies namely LRU and LFU. We compare our analytical results with traces from related caching systems.The last system is a work stealing heuristic for task distribution in the TileraPro64 chip. This system has access to a shared memory and is therefore classified as a parallel system. We create a model for the dynamic generation of tasks as well as how they are executed and distributed among the participating nodes. We study how the heuristic scales when the number of nodes exceeds the number of processors on the chip as well as how different work stealing policies compare with each other. The work on this model is mainly simulation-based.
  •  
9.
  • Atallah, Jad G., 1979- (author)
  • Integrated Frequency Synthesis for Convergent Wireless Solutions
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Wireless transceivers combining several standards in one unit are of key importance. In order to reach the ultimate goal of maximizing the performance-to-cost ratio of such modules, a careful study of the target application, the architecture, and the frequency planning is strongly required. One of the most challenging tasks is the implementation of the frequency synthesizer. This challenge is compounded by the traditional technical difficulties in designing frequency synthesizers as well as the new requirements that include multi-standard support. As a result, studying the upper levels of the communication system becomes mandatory in order to frame the requirements of the frequency synthesizer and to provide a viable solution from a user’s perspective for an always-best-connected scenario. Additionally, the study of the upper layers opens up new opportunities for innovation at the lower layers, especially at the physical layer where the view is traditionally restricted by some harsh requirements whose source might not be clear at least for the physical-level designer. The first aim of this work is to provide a holistic view of how an optimum user experience can be achieved and how this affects the design of frequency synthesizers for the next generation networks. The work is heavily based on the existing garden of wireless standards although it can also serve for other applications such as real software-defined radios and dynamic spectrum allocation. As a result, this work cuts a vertical path starting from the best user experience vision down to the physical layer where it expands on the design of the frequency synthesizer. It proposes a wireless front-end solution that can make the vision of an always-best-connected scenario a reality. The architecture is based on a wireless detector called Sniffer that searches for an alternative connection while the main connection is running. Not only is the Sniffer solution viable at the physical level, but it also provides a stepping stone for development towards fully-enabled multi-standard transceivers. After this, and inline with the previous vision, some important frequency synthesizer parameters are pointed out and enhancements on the phase-locked architectures are presented. This includes ways to extend the range of the frequency synthesizer and ways to make the synthesizer adaptable depending on the requirements of the wireless standards. This work leads directly to the implementation of a multi-standard frequency synthesizer where the details of the top-down design procedure are presented at several levels of abstraction. In order to round-up the work, and due to the fact that the requirements of the frequency synthesizer stretch thin the capabilities of the technology used, calibration techniques to increase the yield of such a complicated sub-system are presented, an important step towards first-pass success.
  •  
10.
  • Attarzadeh Niaki, Seyed Hosein, 1984- (author)
  • Managing the Complexity in Embedded and Cyber-Physical System Design : System Modeling and Design-Space Exploration
  • 2014
  • Doctoral thesis (other academic/artistic)abstract
    • To cope with the increasing complexity of embedded and cyber-physical system design, different system-level design approaches are proposed which start from abstract models and implement them using design flows with high degrees of automation. However, creating models of such systems and also formulating the mathematical problems arising in these design flows are themselves challenging tasks. A promising approach is the composable construction of these models and problems from more basic entities. Unfortunately, it is non-trivial to propose such compositional formulations today because the current practice in the electronic design automation domain tends to be on using imperative languages and frameworks due to legacy and performance-oriented reasons.This thesis addresses the system design complexity by first promoting proper formalisms and frameworks for capturing models and formulating design-space exploration problems for electronic system-level design in a declarative style; and second, propose realizations based on the industrially accepted languages and frameworks which hold the interesting properties such as composability and parallelism.For modeling, ForSyDe, a denotational system-level modeling formalism for heterogeneous embedded systems is chosen, extended with timed domains to make it more appropriate for capturing cyber-physical systems, and mapped on top of the IEEE standard system design language SystemC. The realized modeling framework, called ForSyDe-SystemC, can be used for modeling systems of heterogeneous nature and their composition to form more sophisticated systems and also conducting parallel and distributed simulation for boosting the simulation speed. Another extension to ForSyDe, named wrapper processes, introduces the ability to compose formal ForSyDe models with legacy IP blocks running in external execution environments to perform a heterogeneous co-simulation.In platform-based design flows, the correct and optimal mapping of an application model onto a flexible platform involves solving a hard problem, named design space exploration. This work proposes Tahmuras, a constraint- based framework to construct generic design space exploration problems as the composition of three individual sub-problems: the application, the platform, and the mapping and scheduling problems. In this way, the model of the design space exploration problem in Tahmuras is automatically generated for each combination of application semantics, target platform, and mapping and scheduling policy simply by composing their respective problems. Using constraint programming, problems can be modeled in a declarative style, while they can be solved in a variety of different styles, including imperative solving heuristics commonly used to solve difficult problems. Efficient parallel solvers exists for constraint programming. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 96
Type of publication
doctoral thesis (62)
licentiate thesis (33)
reports (1)
Type of content
other academic/artistic (96)
Author/Editor
Haridi, Seif, Profes ... (11)
Johannesson, Paul, P ... (5)
Muftic, Sead, Profes ... (4)
Tenhunen, Hannu, Pro ... (4)
Van Roy, Peter, Prof ... (3)
Öberg, Johnny (3)
show more...
Alvandpour, Atila, P ... (3)
Jantsch, Axel (3)
Zheng, Lirong, Profe ... (3)
Tenhunen, Hannu (2)
Tenhunnen, Hannu, Pr ... (2)
Dubrova, Elena (2)
Nurmi, Jari, Profess ... (2)
Boman, Magnus, Profe ... (2)
Lu, Zhonghai (2)
Signell, Svante (2)
Ismail, Mohammed (1)
Olsson, Håkan (1)
Magnusson, Christer (1)
Yngström, Louise (1)
Abbas, Haider, 1979- (1)
Ahmed, Hemani, Profe ... (1)
T. Siponen, Mikko, P ... (1)
Kalavri, Vasiliki, 1 ... (1)
Kounelis, Ioannis (1)
Wosinska, Lena (1)
Ghodsi, Ali, 1978- (1)
Li, Nan (1)
Carlsson, Mats (1)
Schubert, Johan (1)
Amin, Yasar (1)
Ukkonen, Leena, Prof ... (1)
Oelmann, Bengt, Prof ... (1)
Ahmad, Waqar (1)
Zheng, Li-Rong (1)
Jonsson, Fredrik, 19 ... (1)
Al Khatib, Iyad, 197 ... (1)
Haridi, Seif (1)
Al-Shishtawy, Ahmad, ... (1)
Vlassov, Vladimir, D ... (1)
Rusu, Ana (1)
Podobas, Artur, 1982 ... (1)
Sanches, Pedro (1)
Ghodsi, Ali (1)
Liu, Ying (1)
Chen, Jian (1)
Chen, Qiang, Forskar ... (1)
García Lozano, Maria ... (1)
Eklöf, Martin (1)
Ahlén, Anders, Profe ... (1)
show less...
University
Royal Institute of Technology (96)
RISE (10)
Language
English (96)
Research subject (UKÄ/SCB)
Engineering and Technology (61)
Natural sciences (36)
Medical and Health Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view