SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0378 5866 "

Search: L773:0378 5866

  • Result 1-10 of 40
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Ardalan, Maryam, 1979, et al. (author)
  • Sex-Dependent Gliovascular Interface Abnormality in the Hippocampus following Postnatal Immune Activation in Mice
  • 2022
  • In: Developmental neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 44:4-5, s. 320-330
  • Journal article (peer-reviewed)abstract
    • The neuro-gliovascular unit is a crucial structure for providing a balanced well-functioning environment for neurons and their synapses. Activation of the immune system during the developmental period is believed to affect the gliovascular unit, which may trigger neurodevelopmental and neurological/neuropsychiatric diseases. In this study, we hypothesized that vulnerability of the male brain to a neonatal insult was conditioned by sex-dependent differences in the impairment of the hippocampal gliovascular unit. Male and female C57BL/6J pups received lipopolysaccharide (LPS) (1 mg/kg) or saline on postnatal day (P) 5. Brains were collected at P12 and morphological quantifications of hippocampal fibrillary glial acid protein (GFAP(+)) astrocytes and ionized calcium-binding adaptor molecule 1 protein (Iba1+) microglia were performed by using 3-D image analysis together with measuring the length of CD31(+) and aquaporin-4 (AQP4(+)) vessels. We found a significant increase in the length of CD31(+) capillaries in the male LPS group compared to the saline group; however, coverage of capillaries by astrocytic end-feet (AQP4(+)) was significantly reduced. In contrast, there was a significant increase in AQP4(+) capillary length in female pups 1 week after LPS injection. GFAP(+) astrocytes via morphological changes in the hippocampus showed significant enhancement in the activity 1 week following LPS injection in male mice. We propose that neonatal inflammation could induce susceptibility to neurodevelopmental disorders through modification of hippocampal gliovascular interface in a sex-dependent manner.
  •  
3.
  • Baburamani, Ana A, et al. (author)
  • Does Caspase-6 Have a Role in Perinatal Brain Injury?
  • 2015
  • In: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 37:4-5, s. 321-337
  • Journal article (peer-reviewed)abstract
    • Apoptotic mechanisms are centre stage for the development of injury in the immature brain, and caspases have been shown to play a pivotal role during brain development and in response to injury. The inhibition of caspases using broad-spectrum agents such as Q-VD-OPh is neuroprotective in the immature brain. Caspase-6, an effector caspase, has been widely researched in neurodevelopmental disorders and found to be important following adult stroke, but its function in the neonatal brain has yet to be detailed. Furthermore, caspases may be important in microglial activation; microglia are required for optimal brain development and following injury, and their close involvement during neuronal cell death suggests that apoptotic cues such as caspase activation may be important in microglial activation. Therefore, in this study we aimed to investigate the possible apoptotic and non-apoptotic functions caspase-6 may have in the immature brain in response to hypoxia-ischaemia. We examined whether caspases are involved in microglial activation. We assessed cleaved caspase-6 expression following hypoxia-ischaemia and conducted primary microglial cultures to assess whether the broad-spectrum inhibitor Q-VD-OPh or caspase-6 gene deletion affected lipopolysaccharide (LPS)-mediated microglial activation and phenotype. We observed cleaved caspase-6 expression to be low but present in the cell body and cell processes in both a human case of white matter injury and 72 h following hypoxia-ischaemia in the rat. Gene deletion of caspase-6 did not affect the outcome of brain injury following mild (50 min) or severe (60 min) hypoxia-ischaemia. Interestingly, we did note that cleaved caspase-6 was co-localised with microglia that were not of apoptotic morphology. We observed that mRNA of a number of caspases was modulated by low-dose LPS stimulation of primary microglia. Q-VD-OPh treatment and caspase-6 gene deletion did not affect microglial activation but modified slightly the M2b phenotype response by changing the time course of SOCS3 expression after LPS administration. Our results suggest that the impact of active caspase-6 in the developing brain is subtle, and we believe there are predominantly other caspases (caspase-2, -3, -8, -9) that are essential for the cell death processes in the immature brain. (C) 2015 S. Karger AG, Basel
  •  
4.
  • Brunse, A, et al. (author)
  • Brain Barrier Disruption and Region-Specific Neuronal Degeneration during Necrotizing Enterocolitis in Preterm Pigs
  • 2018
  • In: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 40:3, s. 198-208
  • Journal article (peer-reviewed)abstract
    • Necrotizing enterocolitis (NEC) increases the risk of brain injury and impaired neurodevelopment. Rapid brain maturation prior to birth may explain why preterm brains are particularly vulnerable to serious infections. Using pigs as models, we hypothesized that preterm birth was associated with altered blood-cerebrospinal fluid (CSF) barrier (BCSFB) function and cerebral structural deficits, and that NEC was associated with systemic inflammation, BCSFB disruption, and neuroinflammation. First, cesarean-delivered preterm and term pigs (<i>n</i> = 43–44) were euthanized at birth to investigate BCSFB function and markers of brain structural maturation, or on day 5 to measure markers of blood-brain barrier maturation in the hippocampus and striatum (experiment 1). Next, preterm pigs (<i>n</i> = 162) were fed increasing volumes of infant formula to assess NEC lesions, systemic inflammation, BCSFB permeability, cerebral histopathology, hippocampal micro­glial density, and cytokine levels on day 5 (experiments 2 and 3). In experiment 1, preterm newborns had increased CSF-plasma ratios of albumin and raffinose, reduced CSF glucose levels, as well as increased cerebral hydration and reduced white matter myelination compared with term animals. We observed lower hippocampal (but not striatal) perivascular astrocyte coverage for the first 5 days after preterm birth, accompanied by altered cell junction protein levels. In experiments 2 and– 3, piglets with severe NEC lesions showed reduced blood thrombocytes and increased plasma C-reactive protein and interleukin-6 levels. NEC was associated with increased CSF-plasma albumin and raffinose ratios, reduced CSF leukocyte numbers, and increased cerebral hydration. In the hippocampus, NEC was associated with pyramidal neuron loss and increased interleukin-6 levels. In the short term, NEC did not affect cerebral myelination or microglia density. In conclusion, altered BCSFB properties and brain structural deficits were observed in pigs after preterm birth. Acute gastrointestinal NEC lesions were associated with systemic inflammation, increased BCSFB permeability and region-specific neuronal damage. The results demonstrate the importance of early interventions against NEC to prevent brain injury in preterm infants.
  •  
5.
  • Cabanes, A, et al. (author)
  • Maternal high n-6 polyunsaturated fatty acid intake during pregnancy increases voluntary alcohol intake and hypothalamic estrogen receptor alpha and beta levels among female offspring
  • 2000
  • In: Developmental neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 22:5-6, s. 488-493
  • Journal article (peer-reviewed)abstract
    • Identification of nongenetic biological factors that predispose to alcohol abuse is central to attempts to prevent alcoholism. Since an exposure to estradiol in utero increases voluntary alcohol intake in adulthood, we investigated whether an increase in pregnancy estradiol levels, caused by feeding pregnant mice a high-fat corn oil diet, also influences voluntary alcohol intake among female offspring. In addition, the effect on estrogen receptor α (ER-α) and ER-β protein levels in the brain using Western blot assay, was determined. Pregnant CD-1 mice were kept on a high n-6 polyunsaturated fatty acid (PUFA; 43% calories from corn oil) or low n-6 PUFA diet (16% calories from corn oil) throughout gestation, and switched to a Purina laboratory chow after the pups were born. When 4 months of age, the female offspring were given a choice between 5% alcohol and tap water. The offspring of high n-6 PUFA mothers voluntarily consumed more alcohol than the offspring of low n-6 PUFA mothers. ER-α and ER-β protein levels in the hypothalamus were 1.5- and 2-fold higher, respectively, in the female offspring of high n-6 PUFA mothers than in the low n-6 PUFA offspring. No significant changes in the protein levels of ER-α and ER-β were seen in the frontal brain. Our findings indicate that a maternal exposure to a high n-6 PUFA diet during pregnancy increases alcohol intake among female offspring. This behavioral change, together with previously observed increase in aggressiveness and reduction in depressive-like behavior in these offspring, may be linked to an increase in the hypothalamic ER-α and ER-β levels.
  •  
6.
  • Carlsson, Ylva, 1975, et al. (author)
  • Role of mixed lineage kinase inhibition in neonatal hypoxia-ischemia.
  • 2009
  • In: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 31:5, s. 420-6
  • Journal article (peer-reviewed)abstract
    • Hypoxic-ischemic brain injury is often delayed and involves both apoptotic and immunoregulatory mechanisms. In this study, we used a neonatal model of hypoxia-ischemia to examine the effect of the mixed lineage kinase (MLK) inhibitor CEP-1347 on brain damage, apoptosis and inflammation. The tissue volume loss was reduced by 28% (p = 0.019) in CEP-1347-treated versus vehicle-treated rats and CEP-1347 significantly attenuated microgliosis at 7 days (p = 0.038). CEP-1347 decreased TUNEL-positive staining as well as cleaved caspase 3 immunoreactivity. CEP-1347 did not affect the expression of pro-inflammatory cytokines IL-1 beta, IL-6 and MCP-1, nor did it affect the expression of OX-42 (CR3) and OX-18 (MHC I) 24 h after the insult. In conclusion, the MLK inhibitor CEP-1347 has protective effects in a neonatal rat model of hypoxia-ischemia, which is mainly related to reduced apoptosis.
  •  
7.
  • Dean, J. M., et al. (author)
  • A Critical Review of Models of Perinatal Infection
  • 2015
  • In: Developmental Neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 37:4-5, s. 289-304
  • Research review (peer-reviewed)abstract
    • One of the central, unanswered questions in perinatology is why preterm infants continue to have such poor long-term neurodevelopmental, cognitive and learning outcomes, even though severe brain injury is now rare. There is now strong clinical evidence that one factor underlying disability may be infection, as well as nonspecific inflammation, during fetal and early postnatal life. In this review, we examine the experimental evidence linking both acute and chronic infection/inflammation with perinatal brain injury and consider key experimental determinants, including the microglia response, relative brain and immune maturity and the pattern of exposure to infection. We highlight the importance of the origin and derivation of the bacterial cell wall component lipopolysaccharide. Such experimental paradigms are essential to determine the precise time course of the inflammatory reaction and to design targeted neuroprotective strategies to protect the perinatal brain from infection and inflammation. (C) 2015 S. Karger AG, Basel
  •  
8.
  • Dudink, I., et al. (author)
  • An Optimized and Detailed Step-by-Step Protocol for the Analysis of Neuronal Morphology in Golgi-Stained Fetal Sheep Brain
  • 2022
  • In: Developmental neuroscience. - : S. Karger AG. - 0378-5866 .- 1421-9859. ; 44:4-5, s. 344-362
  • Journal article (peer-reviewed)abstract
    • Antenatal brain development during the final trimester of human pregnancy is a time when mature neurons become increasingly complex in morphology, through axonal and dendritic outgrowth, dendritic branching, and synaptogenesis, together with myelin production. Characterizing neuronal morphological development over time is of interest to developmental neuroscience and provides the framework to measure gray matter pathology in pregnancy compromise. Neuronal microstructure can be assessed with Golgi staining, which selectively stains a small percentage (1-3%) of neurons and their entire dendritic arbor. Advanced imaging processing and analysis tools can then be employed to quantitate neuronal cytoarchitecture. Traditional Golgi-staining protocols have been optimized, and commercial kits are readily available offering improved speed and sensitivity of Golgi staining to produce consistent results. Golgi-stained tissue is then visualized under light microscopy and image analysis may be completed with several software programs for morphological analysis of neurons, including freeware and commercial products. Each program requires optimization, whether semiautomated or automated, requiring different levels of investigator intervention and interpretation, which is a critical consideration for unbiased analysis. Detailed protocols for fetal ovine brain tissue are lacking, and therefore, we provide a step-by-step workflow of computer software analysis for morphometric quantification of Golgi-stained neurons. Here, we utilized the commonly applied FD Rapid GolgiStain kit (FD NeuroTechnologies) on ovine fetal brains collected at 127 days (0.85) of gestational age for the analysis of CA1 pyramidal neurons in the hippocampus. We describe the step-by-step protocol to retrieve neuronal morphometrics using Imaris imaging software to provide quantification of apical and basal dendrites for measures of dendrite length (mu m), branch number, branch order, and Sholl analysis (intersections over radius). We also detail software add-ons for data retrieval of dendritic spines including the number of spines, spine density, and spine classification, which are critical indicators of synaptic function. The assessment of neuronal morphology in the developing brain using Rapid-Golgi and Imaris software is labor-intensive, particularly during the optimization period. The methodology described in this step-by-step description is novel, detailed, and aims to provide a reproducible, working protocol to quantify neuronal cytoarchitecture with simple descriptions that will save time for the next users of these commonly used techniques.
  •  
9.
  • Engelsberg, Karl, et al. (author)
  • Human Retinal Development in an in situ Whole Eye Culture System.
  • 2011
  • In: Developmental Neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 33, s. 110-117
  • Journal article (peer-reviewed)abstract
    • Phenotypic characterization of human retinogenesis may be facilitated by use of the tissue culture system paradigm. Traditionally, most culture protocols involve isolation of retinal tissue and/or cells, imposing various degrees of trauma, which in many cases leads to abnormal development. In this paper, we present a novel culture technique using whole embryonic eyes to investigate whether the retina in situ can develop normally in vitro. All procedures were carried out in accordance with the Declaration of Helsinki. Human embryos were obtained from elective abortions with the informed consent of the women seeking abortion. A total of 19 eyes were enucleated. The ages of the embryonic retinas were 6-7.5 weeks. Eyecups from 2 eyes were fixed immediately, to be used as controls. The remaining 17 eyes were placed on culture plates and divided into 3 groups kept for 7 (n = 4), 14 (n = 7) and 28 (n = 6) days in vitro (DIV). After fixation, the specimens were processed for hematoxylin and eosin staining, immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). Antibodies against recoverin (rods and cones), protein kinase C (PKC; rod bipolar cells) and vimentin (Müller cells) were used. TUNEL was used to detect apoptotic cells. In hematoxylin- and eosin-stained sections, the control retinas displayed a neuroblast cell layer (NBL) and an inner marginal zone. Specimens kept 7-14 DIV had a similar appearance, while 28-day specimens consisted of an NBL with almost no marginal zone. Thirteen of the 17 cultured retinas displayed completely normal lamination without rosettes or double folds. Pyknotic cells were found at the inner margin of the retinas, and the proportion of these cells increased with time in vitro. TUNEL staining revealed a few scattered cells in 7-DIV specimens, and the amount of stained cells in the inner part of the retinas progressively increased in 14- and 28-DIV specimens. Vimentin labeling showed cells arranged in a vertical pattern in all retinas. Labeling with recoverin revealed photoreceptors in 4 of the retinas kept for 14 DIV, and in all retinas kept for 28 DIV. After 28 DIV, 2 of the eyes labeled with PKC contained rod bipolar cells with minimal axons. Here we showed that human embryonic retinas can be kept in culture in situ within the eye for at least 4 weeks. Abnormal lamination is not as frequent as in isolated full-thickness retinas, indicating that physical and biochemical contact with surrounding tissues is vital for proper development. Several types of the retina-specific neuronal and glial cells were seen to differentiate according to the in vivo schedule. The results are important for future studies of retinal development, and the technique can also be used for testing the effects of various drugs on the immature retina.
  •  
10.
  • Fleiss, Bobbi, et al. (author)
  • The Anti-Inflammatory Effects of the Small Molecule Pifithrin-µ on BV2 Microglia.
  • 2015
  • In: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 37:(4-5), s. 363-75
  • Journal article (peer-reviewed)abstract
    • Neonatal encephalopathy (NE) is a leading cause of childhood death and disability in term infants. Treatment options for perinatal brain injury are limited and developing therapies that target multiple pathways within the pathophysiology of NE are of great interest. Pifithrin-µ (PFT-µ) is a drug with striking neuroprotective abilities in a preclinical model of hypoxia-ischemia (HI)-induced NE wherein cell death is a substantial cause of injury. Work from neurons and tumor cells reports that PFT-µ is able to inhibit p53 binding to the mitochondria, heat shock protein (HSP)-70 substrate binding and activation of the NF-kB pathway. The purpose of this study is to understand whether the neuroprotective effects of PFT-µ also include direct effects on microglia. We utilized the microglial cell line, BV2, and we studied the dose-dependent effect of PFT-µ on M1-like and M2-like phenotype using qRT-PCR and Western blotting, including the requirement for the presence of p53 or HSP-70 in these effects. We also assessed phagocytosis and the effects of PFT-µ on genes within metabolic pathways related to phenotype. We noted that PFT-µ robustly reduced the M1-like (lipopolysaccharide, LPS-induced) BV2 response, spared the LPS-induced phagocytic ability of BV2 and had no effect on the genes related to metabolism and that effects on phenotype were partially dependent on the presence of HSP-70 but not p53. This study demonstrates that the neuroprotective effects of PFT-µ in HI-induced NE may include an anti-inflammatory effect on microglia and adds to the evidence that this drug might be of clinical interest for the treatment of NE. © 2015 S. Karger AG, Basel.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view