SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1355 8145 "

Search: L773:1355 8145

  • Result 1-10 of 18
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brackley, Karen I., 1982, et al. (author)
  • Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation.
  • 2009
  • In: Cell Stress and Chaperones. - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 14:1, s. 23-31
  • Research review (peer-reviewed)abstract
    • The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.
  •  
2.
  • Carra, Serena, et al. (author)
  • The growing world of small heat shock proteins : from structure to functions
  • 2017
  • In: Cell Stress and Chaperones. - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 22:4, s. 601-611
  • Journal article (peer-reviewed)abstract
    • Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world’s experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12–15, 2016).
  •  
3.
  •  
4.
  •  
5.
  • Kampinga, Harm H., et al. (author)
  • Function, evolution, and structure of J-domain proteins
  • 2019
  • In: Cell stress & chaperones (Print). - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 24:1, s. 7-15
  • Research review (peer-reviewed)abstract
    • Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain containing proteins (JDPs) are the largest family of Hsp70 co-chaperones and play a determining role functionally specifying and directing Hsp70 functions. Many features of JDPs are not understood; however, a number of JDP experts gathered at a recent CSSI-sponsored workshop in Gdansk (Poland) to discuss various aspects of J-domain protein function, evolution, and structure. In this report, we present the main findings and the consensus reached to help direct future developments in the field of Hsp70 research.
  •  
6.
  • Lambert, Wietske, et al. (author)
  • Probing the transient interaction between the small heat-shock protein Hsp21 and a model substrate protein using crosslinking mass spectrometry.
  • 2012
  • In: Cell Stress & Chaperones. - : Springer Science and Business Media LLC. - 1466-1268 .- 1355-8145.
  • Journal article (peer-reviewed)abstract
    • Small heat-shock protein chaperones are important players in the protein quality control system of the cell, because they can immediately respond to partially unfolded proteins, thereby protecting the cell from harmful aggregates. The small heat-shock proteins can form large polydisperse oligomers that are exceptionally dynamic, which is implicated in their function of protecting substrate proteins from aggregation. Yet the mechanism of substrate recognition remains poorly understood, and little is known about what parts of the small heat-shock proteins interact with substrates and what parts of a partially unfolded substrate protein interact with the small heat-shock proteins. The transient nature of the interactions that prevent substrate aggregation rationalize probing this interaction by crosslinking mass spectrometry. Here, we used a workflow with lysine-specific crosslinking and offline nano-liquid chromatography matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry to explore the interaction between the plant small heat-shock protein Hsp21 and a thermosensitive model substrate protein, malate dehydrogenase. The identified crosslinks point at an interaction between the disordered N-terminal region of Hsp21 and the C-terminal presumably unfolding part of the substrate protein.
  •  
7.
  •  
8.
  • Marklund, Erik G., Teknologie doktor, 1979-, et al. (author)
  • Structural and functional aspects of the interaction partners of the small heat-shock protein in Synechocystis
  • 2018
  • In: Cell stress & chaperones (Print). - : Springer Science and Business Media LLC. - 1355-8145 .- 1466-1268. ; 23:4, s. 723-732
  • Journal article (peer-reviewed)abstract
    • The canonical function of small heat-shock proteins (sHSPs) is to interact with proteins destabilized under conditions of cellular stress. While the breadth of interactions made by many sHSPs is well-known, there is currently little knowledge about what structural features of the interactors form the basis for their recognition. Here, we have identified 83 in vivo interactors of the sole sHSP in the cyanobacterium Synechocystis sp. PCC 6803, HSP16.6, reflective of stable associations with soluble proteins made under heat-shock conditions. By performing bioinformatic analyses on these interactors, we identify primary and secondary structural elements that are enriched relative to expectations from the cyanobacterial genome. In addition, by examining the Synechocystis interactors and comparing them with those identified to bind sHSPs in other prokaryotes, we show that sHSPs associate with specific proteins and biological processes. Our data are therefore consistent with a picture of sHSPs being broadly specific molecular chaperones that act to protect multiple cellular pathways.
  •  
9.
  • Månsson, Cecilia, et al. (author)
  • DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios.
  • 2014
  • In: Cell Stress & Chaperones. - : Springer Science and Business Media LLC. - 1466-1268 .- 1355-8145. ; 19:2, s. 227-239
  • Journal article (peer-reviewed)abstract
    • Expanded polyglutamine (polyQ) stretches lead to protein aggregation and severe neurodegenerative diseases. A highly efficient suppressor of polyQ aggregation was identified, the DNAJB6, when molecular chaperones from the HSPH, HSPA, and DNAJ families were screened for huntingtin exon 1 aggregation in cells (Hageman et al. in Mol Cell 37(3):355-369, 2010). Furthermore, also aggregation of polyQ peptides expressed in cells was recently found to be efficiently suppressed by co-expression of DNAJB6 (Gillis et al. in J Biol Chem 288:17225-17237, 2013). These suppression effects can be due to an indirect effect of DNAJB6 on other cellular components or to a direct interaction between DNAJB6 and polyQ peptides that may depend on other cellular components. Here, we have purified the DNAJB6 protein to investigate the suppression mechanism. The purified DNAJB6 protein formed large heterogeneous oligomers, in contrast to the more canonical family member DNAJB1 which is dimeric. Purified DNAJB6 protein, at substoichiometric molar ratios, efficiently suppressed fibrillation of polyQ peptides with 45°Q in a thioflavin T fibrillation. No suppression was obtained with DNAJB1, but with the closest homologue to DNAJB6, DNAJB8. The suppression effect was independent of HSPA1 and ATP. These data, based on purified proteins and controlled fibrillation in vitro, strongly suggest that the fibrillation suppression is due to a direct protein-protein interaction between the polyQ peptides and DNAJB6 and that the DNAJB6 has unique fibrillation suppression properties lacking in DNAJB1. Together, the data obtained in cells and in vitro support the view that DNAJB6 is a peptide-binding chaperone that can interact with polyQ peptides that are incompletely degraded by and released from the proteasome.
  •  
10.
  • Pinsino, A., et al. (author)
  • Coelomocytes and post-traumatic response in the common sea star Asterias rubens
  • 2007
  • In: Cell Stress & Chaperones. - 1355-8145. ; 12:4, s. 331-341
  • Journal article (peer-reviewed)abstract
    • Coelomocytes are recognized as the main cellular component of the echinoderm immune system. They are the first line of defense and their number and type can vary dramatically during infections or following injury. Sea stars have been used as a model system to study the regeneration process after autotomy or predation. In the present study we examined the cellular and biochemical responses of coelomocytes from the European sea star Asterias rubens to traumatic stress using immunochemical and biochemical approaches. In terms of trauma and post-traumatic stress period, here we consider the experimental arm amputation and the repair phase involved in the first 24 hours post-amputation, which mimicked a natural predation event. Four cell morphotypes were distinguishable in the coelomic fluid of both control and post-traumatic-stressed animals (phagocytes, amoebocytes, vibratile cells, hemocytes), but phagocytes were the major components, accounting for about 95% of the total population. Thus, the effects measured relate to the overall population of coelomocytes. A modest increase in the total number of freely circulating coelomocytes was observed 6 hours post-amputation. Interestingly, a monoclonal antibody (McAb) to a sea urchin embryo adhesion protein (toposome) cross-reacted with isolated sea star coelomocytes and stained the coelomic epithelium of control animals with an increase in trauma-stressed arms. In addition, coelomocytes from trauma-stressed animals showed a time-dependent increase in Hsp70 levels, as detected by both immunocytochemistry and immunoblotting within 24 hours after arm tip amputation, with a peak at 6 hours after amputation. Our findings indicate a clear role for coelomocytes and classic stress molecules in the post-traumatic stress associated with the early repair phase of regeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view