SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:1989 8649 "

Search: L773:1989 8649

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dias, P. Joana, et al. (author)
  • Establishment of a taxonomic and molecular reference collection to support the identification of species regulated by the Western Australian Prevention List for Introduced Marine Pests
  • 2017
  • In: Management of Biological Invasions. - : Regional Euro-Asian Biological Invasions Centre Oy (REABIC). - 1989-8649. ; 8:2, s. 215-225
  • Journal article (peer-reviewed)abstract
    • Introduced Marine Pests (IMP, = non-indigenous marine species) prevention, early detection and risk-based management strategies have become the priority for biosecurity operations worldwide, in recognition of the fact that, once established, the effective management of marine pests can rapidly become cost prohibitive or impractical. In Western Australia (WA), biosecurity management is guided by the Western Australian Prevention List for Introduced Marine Pests which is a policy tool that details species or genera as being of high risk to the region. This list forms the basis of management efforts to prevent introduction of these species, monitoring efforts to detect them at an early stage, and rapid response should they be detected. It is therefore essential that the species listed can be rapid and confidently identified and discriminated from native species by a range of government and industry stakeholders. Recognising that identification of these species requires very specialist expertise which may be in short supply and not readily accessible in a regulatory environment, and the fact that much publicly available data is not verifiable or suitable for regulatory enforcement, the WA government commissioned the current project to collate a reference collection of these marine pest specimens. In this work, we thus established collaboration with researchers worldwide in order to source representative specimens of the species listed. Our main objective was to build a reference collection of taxonomically vouchered specimens and subsequently to generate species-specific DNA barcodes suited to supporting their future identification. To date, we were able to obtain specimens of 75 species (representative of all but four of the pests listed) which have been identified by experts and placed with the WA Government Department of Fisheries and, where possible, in accessible museums and institutions in Australasia. The reference collection supports the fast and reliable taxonomic and molecular identification of marine pests in WA and constitutes a valuable resource for training of stakeholders with interest in IMP recognition in Australia. The reference collection is also useful in supporting the development of a variety of DNA-based detection strategies such as real-time PCR and metabarcoding of complex environmental samples (e.g. biofouling communities). The Prevention List is under regular review to ensure its continued relevance and that it remains evidence and risk-based. Similarly, its associated reference collection also remains to some extent a work in progress. In recognition of this fact, this report seeks to provide details of this continually evolving information repository publicly available to the biosecurity management community worldwide.
  •  
2.
  • Edsman, Lennart (author)
  • Tackling invasive alien species in Europe: the top 20 issues
  • 2014
  • In: Management of Biological Invasions. - : Regional Euro-Asian Biological Invasions Centre Oy (REABIC). - 1989-8649. ; 5, s. 1-20
  • Journal article (peer-reviewed)abstract
    • Globally, Invasive Alien Species (IAS) are considered to be one of the major threats to native biodiversity, with the World Conservation Union (IUCN) citing their impacts as ‘immense, insidious, and usually irreversible’. It is estimated that 11% of the c. 12,000 alien species in Europe are invasive, causing environmental, economic and social damage; and it is reasonable to expect that the rate of biological invasions into Europe will increase in the coming years. In order to assess the current position regarding IAS in Europe and to determine the issues that were deemed to be most important or critical regarding these damaging species, the international Freshwater Invasives - Networking for Strategy (FINS) conference was convened in Ireland in April 2013. Delegates from throughout Europe and invited speakers from around the world were brought together for the conference. These comprised academics, applied scientists, policy makers, politicians, practitioners and representative stakeholder groups. A horizon scanning and issue prioritization approach was used by in excess of 100 expert delegates in a workshop setting to elucidate the Top 20 IAS issues in Europe. These issues do not focus solely on freshwater habitats and taxa but relate also to marine and terrestrial situations. The Top 20 issues that resulted represent a tool for IAS management and should also be used to support policy makers as they prepare European IAS legislation.
  •  
3.
  • Florin, Ann-Britt (author)
  • Twenty five years of invasion: management of the round goby Neogobius melanostomus in the Baltic Sea
  • 2015
  • In: Management of Biological Invasions. - : Regional Euro-Asian Biological Invasions Centre Oy (REABIC). - 1989-8649. ; 6, s. 329-339
  • Journal article (peer-reviewed)abstract
    • The round goby, Neogobius melanostomus (Pallas, 1814), is one of the most invasive non-indigenous species in the Baltic Sea. It dominates coastal fisheries in some localities and is frequently found in offshore pelagic catches. This paper identifies management issues and suggests actions to be considered for post-invasion management. Priority should be given to the establishment of a coordinated pan-Baltic monitoring programme and associated data storage and exchange, as well as the compilation of landing statistics of the round goby in commercial and recreational fisheries. While eradication is unrealistic, population control that leads to minimising the risk of transfer to yet uncolonised areas in the Baltic Sea and adjacent waterbodies is feasible. This should comprise the requirement that the species be landed in commercial fishery bycatch, the management of ships' ballast water and sediments, and hull fouling of inland and sea-going vessels, including recreational boats. Extensive involvement of stakeholders is crucial at all phases of the management process.
  •  
4.
  • Mortensen, S., et al. (author)
  • Effects of a bio-invasion of the pacific oyster, crassostrea gigas (Thunberg, 1793) in five shallow water habitats in scandinavia
  • 2017
  • In: Management of Biological Invasions. - : Regional Euro-Asian Biological Invasions Centre Oy (REABIC). - 1989-8649. ; 8:4, s. 543-552
  • Journal article (peer-reviewed)abstract
    • Management of invasive species is addressed in both national and international regulations regarding the protection of marine habitats and biodiversity and in regulations of aquaculture. The geographical range of the invasive Pacific oyster, Crassostrea gigas, is expanding, both through human mediated vectors and by natural dispersal. The species is now spreading in Scandinavia. In order to optimize the management of the oyster, including targeted monitoring and mitigation activities, knowledge on the present and future distribution and impact on the ecosystem is important. The development of the population and the potential impacts on native ecosystems were analyzed, based on the present scientific knowledge on the distribution in Scandinavia, data on new settlements and existing literature. Data was first evaluated by 14 experts (including the authors) during a workshop, relating the current status of habitats where Pacific oysters are found in Scandinavia (Low energy rock, Littoral sand and mudflats, Littoral biogenic reefs, Sublittoral sand and Sublittoral biogenic reefs) to a predicted development, thereafter assessed in relation to impact on the habitats. The assessment was done as a function of climate change in a long-term IPCC climate scenario (A1B). We conclude that Littoral biogenic reefs are at risk to obtain the highest expected increase, while all other habitats are at risk of low to moderate development of the oyster populations. Accordingly, Littoral Biogenic reefs was assessed as the habitat type at risk of the largest ecosystem effects as high densities of oysters already exist in these areas, and the densities are expected to increase rapidly until reaching a threshold density. Low energy rock and Littoral sand and mud were assessed as being subjected to moderate to high ecosystem effects. Sub-littoral sand and Sub-littoral biogenic reefs were assessed as currently being at risk of moderate ecosystem effects as there are low densities of oysters in these habitats, although densities in sublittoral biogenic reefs has the potential to increase. We discuss management and mitigation strategies based on the forecasted development and effects of the Pacific oyster populations. © 2017 The Author(s). and © 2017 REABIC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view