SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2159 8274 "

Search: L773:2159 8274

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chen, Z. X., et al. (author)
  • RNA helicase a is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma
  • 2014
  • In: Cancer Discovery. - 2159-8274 .- 2159-8290. ; 4:4, s. 434-451
  • Journal article (peer-reviewed)abstract
    • Inherited KIF1B loss-of-function mutations in neuroblastomas and pheochromocytomas implicate the kinesin KIF1B as a 1p36.2 tumor suppressor. However, the mechanism of tumor suppression is unknown. We found that KIF1B isoform β (KIF1Bβ) interacts with RNA helicase A (DHX9), causing nuclear accumulation of DHX9, followed by subsequent induction of the proapoptotic XIAP-associated factor 1 (XAF1) and, consequently, apoptosis. Pheochromocytoma and neuroblastoma arise from neural crest progenitors that compete for growth factors such as nerve growth factor (NGF) during development. KIF1Bβ is required for developmental apoptosis induced by competition for NGF. We show that DHX9 is induced by and required for apoptosis stimulated by NGF deprivation. Moreover, neuroblastomas with chromosomal deletion of 1p36 exhibit loss of KIF1Bβ expression and impaired DHX9 nuclear localization, implicating the loss of DHX9 nuclear activity in neuroblastoma pathogenesis. SIGNIFICANCE: KIF1Bβ has neuroblastoma tumor-suppressor properties and promotes and requires nuclear-localized DHX9 for its apoptotic function by activating XAF1 expression. Loss of KIF1Bβ alters subcellular localization of DHX9 and diminishes NGF dependence of sympathetic neurons, leading to reduced culling of neural progenitors, and, therefore, might predispose to tumor formation.
  •  
2.
  • Jimenez-Pascual, Ana, et al. (author)
  • ADAMDEC1 Maintains a Growth Factor Signaling Loop in Cancer Stem Cells
  • 2019
  • In: Cancer Discovery. - 2159-8274 .- 2159-8290. ; 9:11, s. 1574-1589
  • Journal article (peer-reviewed)abstract
    • Glioblastomas (GBM) are lethal brain tumors where poor outcome is attributed to cellular heterogeneity, therapeutic resistance, and a highly infiltrative nature. These characteristics are preferentially linked to GBM cancer stem cells (GSC), but how GSCs maintain their stemness is incompletely understood and the subject of intense investigation. Here, we identify a novel signaling loop that induces and maintains GSCs consisting of an atypical metalloproteinase, ADAMDEC1, secreted by GSCs. ADAMDEC1 rapidly solubilizes FGF2 to stimulate FGFR1 expressed on GSCs. FGFR1 signaling induces upregulation of ZEB1 via ERK1/2 that regulates ADAMDEC1 expression through miR-203, creating a positive feedback loop. Genetic or pharmacologic targeting of components of this axis attenuates self-renewal and tumor growth. These findings reveal a new signaling axis for GSC maintenance and highlight ADAMDEC1 and FGFR1 as potential therapeutic targets in GBM.Significance: Cancer stem cells (CSC) drive tumor growth in many cancers including GBM. We identified a novel sheddase, ADAMDEC1, which initiates an FGF autocrine loop to promote stemness in CSCs. This loop can be targeted to reduce GBM growth.
  •  
3.
  •  
4.
  •  
5.
  • Marshall, Netonia, et al. (author)
  • Antitumor T-cell Homeostatic Activation Is Uncoupled from Homeostatic Inhibition by Checkpoint Blockade
  • 2019
  • In: Cancer Discovery. - : American Association For Cancer Research (AACR). - 2159-8274 .- 2159-8290. ; 9:11, s. 1520-1537
  • Journal article (peer-reviewed)abstract
    • T-cell transfer into lymphodepleted recipients induces homeostatic activation and potentiates antitumor efficacy. In contrast to canonical T-cell receptor–induced activation, homeostatic activation yields a distinct phenotype and memory state whose regulatory mechanisms are poorly understood. Here, we show in patients and murine models that, following transfer into lymphodepleted bone marrow transplant (BMT) recipients, CD8+ T cells undergo activation but also simultaneous homeostatic inhibition manifested by upregulation of immune-checkpoint molecules and functional suppression. T cells transferred into BMT recipients were protected from homeostatic inhibition by PD-1/CTLA4 dual checkpoint blockade (dCB). This combination of dCB and BMT— ”immunotransplant”—increased T-cell homeostatic activation and antitumor T-cell responses by an order of magnitude. Like homeostatic activation, homeostatic inhibition is IL7/IL15-dependent, revealing mechanistic coupling of these two processes. Marked similarity in ex vivo modulation of post-BMT T cells in mice and patients is promising for the clinical translation of immunotransplant (NCT03305445) and for addressing homeostatic inhibition in T-cell therapies. SIGNIFICANCE: For optimal anticancer effect, T-cell therapies including chimeric antigen receptor T-cell, tumor-infiltrating lymphocyte, and transgenic T-cell therapies require transfer into lymphodepleted recipients and homeostatic activation; however, concomitant homeostatic inhibition mitigates T-cell therapies’ efficacy. Checkpoint blockade uncouples homeostatic inhibition from activation, amplifying T-cell responses. Conversely, tumors nonresponsive to checkpoint blockade or BMT are treatable with immunotransplant. © 2019 American Association for Cancer Research.
  •  
6.
  • Upadhyay, Ranjan, et al. (author)
  • A Critical Role for Fas-Mediated Off-Target Tumor Killing in T-cell Immunotherapy
  • 2021
  • In: Cancer Discovery. - : American Association For Cancer Research (AACR). - 2159-8274 .- 2159-8290. ; 11:3, s. 599-613
  • Journal article (peer-reviewed)abstract
    • T cell-based therapies have induced cancer remissions, though most tumors ultimately progress, reflecting inherent or acquired resistance including antigen escape. Better understanding of how T cells eliminate tumors will help decipher resistance mechanisms. We used a CRISPR/Cas9 screen and identified a necessary role for Fas-FasL in antigen-specific T-cell killing. We also found that Fas-FasL mediated off-target "bystander" killing of antigen-negative tumor cells. This localized bystander cytotoxicity enhanced clearance of antigen-heterogeneous tumors in vivo, a finding that has not been shown previously. Fas-mediated on-target and bystander killing was reproduced in chimeric antigen receptor (CAR-T) and bispecific antibody T-cell models and was augmented by inhibiting regulators of Fas signaling. Tumoral FAS expression alone predicted survival of CAR-T-treated patients in a large clinical trial (NCT02348216). These data suggest strategies to prevent immune escape by targeting both the antigen expression of most tumor cells and the geography of antigen-loss variants. SIGNIFICANCE: This study demonstrates the first report of in vivo Fas-dependent bystander killing of antigen-negative tumors by T cells, a phenomenon that may be contributing to the high response rates of antigen-directed immunotherapies despite tumoral heterogeneity. Small molecules that target the Fas pathway may potentiate this mechanism to prevent cancer relapse.
  •  
7.
  • Watkins, Johnathan, et al. (author)
  • Genomic Complexity Profiling Reveals That HORMAD1 Overexpression Contributes to Homologous Recombination Deficiency in Triple-Negative Breast Cancers
  • 2015
  • In: Cancer Discovery. - 2159-8274 .- 2159-8290. ; 5:5, s. 488-505
  • Journal article (peer-reviewed)abstract
    • Triple-negative breast cancers (TNBC) are characterized by a wide spectrum of genomic alterations, some of which might be caused by defects in DNA repair processes such as homologous recombination (HR). Despite this understanding, associating particular patterns of genomic instability with response to therapy has been challenging. Here, we show that allelic-imbalanced copy-number aberrations (AiCNA) are more prevalent in TNBCs that respond to platinum-based chemotherapy, thus providing a candidate predictive biomarker for this disease. Furthermore, we show that a high level of AiCNA is linked with elevated expression of a meiosis-associated gene, HORMAD1. Elevated HORMAD1 expression suppresses RAD51-dependent HR and drives the use of alternative forms of DNA repair, the generation of AiCNAs, as well as sensitizing cancer cells to HR-targeting therapies. Our data therefore provide a mechanistic association between HORMAD1 expression, a specific pattern of genomic instability, and an association with response to platinum-based chemotherapy in TNBC. SIGNIFICANCE: Previous studies have shown correlation between mutational "scars" and sensitivity to platinums extending beyond associations with BRCA1/2 mutation, but do not elucidate the mechanism. Here, a novel allele-specific copy-number characterization of genome instability identifies and functionally validates the inappropriate expression of the meiotic gene HORMAD1 as a driver of HR deficiency in TNBC, acting to induce allelic imbalance and moderate platinum and PARP inhibitor sensitivity with implications for the use of such "scars" and expression of meiotic genes as predictive biomarkers.
  •  
8.
  • DeNardo, David G., et al. (author)
  • Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy
  • 2011
  • In: Cancer Discovery. - 2159-8274. ; 1:1, s. 54-67
  • Journal article (peer-reviewed)abstract
    • Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8(+) T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. SIGNIFICANCE: These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8(+) T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy. Cancer Discovery; 1(1); 54-67. (C) 2011 AACR.
  •  
9.
  • Bald, Tobias, et al. (author)
  • Immune Cell-Poor Melanomas Benefit from PD-1 Blockade after Targeted Type I IFN Activation
  • 2014
  • In: Cancer Discovery. - 2159-8274. ; 4:6, s. 674-687
  • Journal article (peer-reviewed)abstract
    • Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. SIGNIFICANCE: Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. (C) 2014 AACR.
  •  
10.
  • Castaño, Zafira, et al. (author)
  • Stromal EGF and igf-I together modulate plasticity of disseminated triple-negative breast tumors
  • 2013
  • In: Cancer Discovery. - 2159-8274. ; 3:8, s. 922-935
  • Journal article (peer-reviewed)abstract
    • The causes for malignant progression of disseminated tumors and the reasons recurrence rates differ in women with different breast cancer subtypes are unknown. Here, we report novel mechanisms of tumor plasticity that are mandated by microenvironmental factors and show that recurrence rates are not strictly due to cell-intrinsic properties. Specifically, outgrowth of the same population of incipient tumors is accelerated in mice with triple-negative breast cancer (TNBC) relative to those with luminal breast cancer. Systemic signals provided by overt TNBCs cause the formation of a tumor-supportive microenvironment enriched for EGF and insulin-like growth factor-I (IGF-I) at distant indolent tumor sites. Bioavailability of EGF and IGF-I enhances the expression of transcription factors associated with pluripotency, proliferation, and epithelial-mesenchymal transition. Combinatorial therapy with EGF receptor and IGF-I receptor inhibitors prevents malignant progression. These results suggest that plasticity and recurrence rates can be dictated by host systemic factors and offer novel therapeutic potential for patients with TNBC.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view