SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2329 0501 "

Search: L773:2329 0501

  • Result 1-10 of 23
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Al-Saadi, Jonathan, et al. (author)
  • Endovascular transplantation of mRNA-enhanced mesenchymal stromal cells results in superior therapeutic protein expression in swine heart
  • 2024
  • In: Molecular therapy. Methods & clinical development. - : Elsevier BV. - 2399-6951 .- 2329-0501. ; 32:2
  • Journal article (peer-reviewed)abstract
    • Heart failure has a poor prognosis and no curative treatment exists. Clinical trials are investigating gene- and cell-based therapies to improve cardiac function. The safe and efficient delivery of these therapies to solid organs is challenging. Herein, we demonstrate the feasibility of using an endovascular intramyocardial delivery approach to safely administer mRNA drug products and perform cell transplantation procedures in swine. Using a trans-vessel wall (TW) device, we delivered chemically modified mRNAs (modRNA) and mRNA-enhanced mesenchymal stromal cells expressing vascular endothelial growth factor A (VEGF-A) directly to the heart. We monitored and mapped the cellular distribution, protein expression, and safety tolerability of such an approach. The delivery of modRNA-enhanced cells via the TW device with different flow rates and cell concentrations marginally affect cell viability and protein expression in situ. Implanted cells were found within the myocardium for at least 3 days following administration, without the use of immunomodulation and minimal impact on tissue integrity. Finally, we could increase the protein expression of VEGF-A over 500-fold in the heart using a cell-mediated modRNA delivery system compared with modRNA delivered in saline solution. Ultimately, this method paves the way for future research to pioneer new treatments for cardiac disease.
  •  
5.
  • Anttila, V., et al. (author)
  • Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a Phase 2a Clinical Trial
  • 2020
  • In: Molecular Therapy-Methods & Clinical Development. - : Elsevier BV. - 2329-0501. ; 18, s. 464-472
  • Journal article (peer-reviewed)abstract
    • Therapeutic angiogenesis may improve outcomes in patients with coronary artery disease undergoing surgical revascularization. Angiogenic factors may promote blood vessel growth and regenerate regions of ischemic but viable myocardium. Previous clinical trials of vascular endothelial growth factor A (VEGF-A) gene therapy with DNA or viral vectors demonstrated safety but not efficacy. AZD8601 is VEGF-A(165) mRNA formulated in biocompatible citrate-buffered saline and optimized for high-efficiency VEGF-A expression with minimal innate immune response. EPICCURE is an ongoing randomized, double-blind, placebo-controlled study of the safety of AZD8601 in patients with moderately decreased left ventricular function (ejection fraction 30% 50%) undergoing elective coronary artery bypass surgery. AZD8601 3 mg, 30 mg, or placebo is administered as 30 epicardial injections in a 10-min extension of cardioplegia. Injections are targeted to ischemic but viable myocardial regions in each patient using quantitative O-15-water positron emission tomography (PET) imaging (stress myocardial blood flow < 2.3 mL/g/min; resting myocardial blood flow > 0.6 mL/g/min). Improvement in regional and global myocardial blood flow quantified with O-15-water PET is an exploratory efficacy outcome, together with echocardiographic, clinical, functional, and biomarker measures. EPICCURE combines high-efficiency delivery with quantitative targeting and follow-up for robust assessment of the safety and exploratory efficacy of VEGF-A mRNA angiogenesis (ClinicalTrials.gov: NCT03370887).
  •  
6.
  •  
7.
  •  
8.
  • Cerrato, Carmine Pasquale, et al. (author)
  • Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide
  • 2017
  • In: Molecular therapy. Methods & clinical development. - : Elsevier BV. - 2399-6951 .- 2329-0501. ; 5, s. 221-231
  • Journal article (peer-reviewed)abstract
    • Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs) superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs), exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP) internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.
  •  
9.
  • Chen, Yong, et al. (author)
  • Metformin, an AMPK Activator, Inhibits Activation of FLSs but Promotes HAPLN1 Secretion
  • 2020
  • In: Molecular therapy. Methods & clinical development. - : Elsevier BV. - 2399-6951 .- 2329-0501. ; 17, s. 1202-1214
  • Journal article (peer-reviewed)abstract
    • AMP-activated protein kinase (AMPK) is essential for maintaining energy balance and has a crucial role in various inflammatory pathways. In this study, AMPK levels positively correlated with many inflammatory indexes in rheumatoid arthritis (RA) patients, especially in the affected synovium. In RA sera, a positive correlation between phosphorylated (p-)AMPK-α1 levels and DAS28 (disease activity score 28) activity (r = 0.270, p < 0.0001) was found. Similarly, a positive correlation was observed between AMPK-α1 and tumor necrosis factor α (TNF-α) levels (r = 0.460, p = 0.0002). Differentially expressed genes between osteoarthritis (OA) and RA synovium from NCBI GEO profiles and our RNA sequencing data suggested activation of metabolic pathways specific to RA-fibroblast-like synoviocytes (FLSs). AMPK-α1 was highly expressed in the synovium of RA but not OA patients. An AMPK activator, metformin, inhibited FLS proliferation at higher but not lower concentrations, whereas the inhibitor dorsomorphin promoted the proliferation of RA-FLSs. Interestingly, both metformin and dorsomorphin inhibited the migration of RA-FLSs. After metformin treatment, expression of interleukin 6 (IL-6), TNF-α, and IL-1β were significantly downregulated in RA-FLSs; however, increased expression of p-AMPK-α1, protein kinase A (PKA)-α1, and HAPLN1 (hyaluronan and proteoglycan link protein 1) was observed. Increased levels of HAPLN1 in RA-FLSs by an AMPK activator could potentially be beneficial in protecting the joints. Hence, our results demonstrate the potential of an AMPK activator as a therapeutic for RA.
  •  
10.
  • Chtarto, Abdelwahed, et al. (author)
  • A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses
  • 2016
  • In: Molecular Therapy - Methods and Clinical Development. - : Elsevier BV. - 2329-0501. ; 5
  • Journal article (peer-reviewed)abstract
    • Preclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector. This vector allowed for the first time a longitudinal analysis of inducible transgene expression in the brain using bioluminescence imaging. To evaluate the dose range of GDNF biological activity, the inducible AAV vector (8.0 × 10(9) viral genomes) was injected in the rat striatum at four delivery sites and increasing doxycycline doses administered orally. ERK/Akt signaling activation as well as tyrosine hydroxylase downregulation, a consequence of long-term GDNF treatment, were induced at plasmatic doxycycline concentrations of 140 and 320 ng/ml respectively, which are known not to increase antibiotic-resistant microorganisms in patients. In these conditions, GDNF covered the majority of the striatum. No behavioral abnormalities or weight loss were observed. Motor asymmetry resulting from unilateral GDNF treatment only appeared with a 2.5-fold higher vector and a 13-fold higher inducer doses. Our data suggest that using the herein-described inducible AAV vector, biological effects of GDNF can be obtained in response to sub-antimicrobial doxycycline doses.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view