SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:2509 4971 OR L773:2509 498X "

Search: L773:2509 4971 OR L773:2509 498X

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andersson Hagiwara, Magnus, et al. (author)
  • The Effects of Integrated IT Support on the Prehospital Stroke Process: Results from a Realistic Experiment
  • 2019
  • In: Journal of Healthcare Informatics Research. - : Springer Science and Business Media LLC. - 2509-498X .- 2509-4971. ; 3:3, s. 300-328
  • Journal article (peer-reviewed)abstract
    • Stroke is a serious condition and the stroke chain of care is a complex. The present study aims to explore the impact of a computerised decision support system (CDSS) for the prehospital stroke process, with focus on work processes and performance. The study used an exploratory approach with a randomised controlled crossover design in a realistic contextualised simulation experiment. The study compared clinical performance among 11 emergency medical services (EMS) teams of 22 EMS clinicians using (1) a computerised decision support system (CDSS) and (2) their usual paper-based process support. Data collection consisted of video recordings, postquestionnaires and post-interviews, and data were analysed using a combination of qualitative and quantitative approaches. In this experiment, using a CDSS improved patient assessment, decision making and compliance to process recommendations. Minimal impact of the CDSS was found on EMS clinicians’ self-efficacy, suggesting that even though the system was found to be cumbersome to use it did not have any negative effects on self-efficacy. Negative effects of the CDSS include increased on-scene time and a cognitive burden of using the system, affecting patient interaction and collaboration with team members. The CDSS’s overall process advantage to the prehospital stroke process is assumed to lead to a prehospital care that is both safer and of higher quality. The key to user acceptance of a system such as this CDSS is the relative advantages of improved documentation process and the resulting patient journal. This could improve the overall prehospital stroke process.
  •  
2.
  • Irgang dos Santos, Luís Fernando, Doctoral Candidate in Innovation Sciences, 1989-, et al. (author)
  • Data-Driven Technologies as Enablers for Value Creation in the Prevention of Surgical Site Infections : a Systematic Review
  • 2023
  • In: Journal of Healthcare Informatics Research. - Cham : Springer. - 2509-4971 .- 2509-498X. ; 7, s. 1-41
  • Research review (other academic/artistic)abstract
    • Despite the advances in modern medicine, the use of data-driven technologies (DDTs) to prevent surgical site infections (SSIs) remains a major challenge. Scholars recognise that data management is the next frontier in infection prevention, but many aspects related to the benefits and advantages of using DDTs to mitigate SSI risk factors remain unclear and underexplored in the literature. This study explores how DDTs enable value creation in the prevention of SSIs. This study follows a systematic literature review approach and the PRISMA statement to analyse peer-reviewed articles from seven databases. Fifty-nine articles were included in the review and were analysed through a descriptive and a thematic analysis. The findings suggest a growing interest in DDTs in SSI prevention in the last 5 years, and that machine learning and smartphone applications are widely used in SSI prevention. DDTs are mainly applied to prevent SSIs in clean and clean-contaminated surgeries and often used to manage patient-related data in the postoperative stage. DDTs enable the creation of nine categories of value that are classified in four dimensions: cost/sacrifice, functional/instrumental, experiential/hedonic, and symbolic/expressive. This study offers a unique and systematic overview of the value creation aspects enabled by DDT applications in SSI prevention and suggests that additional research is needed in four areas: value co-creation and product-service systems, DDTs in contaminated and dirty surgeries, data legitimation and explainability, and data-driven interventions. © 2023, The Author(s).
  •  
3.
  • Kaelin, Vera C., et al. (author)
  • Natural language processing to classify caregiver strategies supporting participation among children and youth with craniofacial microsomia and other childhood-onset disabilities
  • 2023
  • In: Journal of Healthcare Informatics Research. - : Springer Nature. - 2509-4971 .- 2509-498X.
  • Journal article (peer-reviewed)abstract
    • Customizing participation-focused pediatric rehabilitation interventions is an important but also complex and potentially resource intensive process, which may benefit from automated and simplified steps. This research aimed at applying natural language processing to develop and identify a best performing predictive model that classifies caregiver strategies into participation-related constructs, while filtering out non-strategies. We created a dataset including 1,576 caregiver strategies obtained from 236 families of children and youth (11–17 years) with craniofacial microsomia or other childhood-onset disabilities. These strategies were annotated to four participation-related constructs and a non-strategy class. We experimented with manually created features (i.e., speech and dependency tags, predefined likely sets of words, dense lexicon features (i.e., Unified Medical Language System (UMLS) concepts)) and three classical methods (i.e., logistic regression, naïve Bayes, support vector machines (SVM)). We tested a series of binary and multinomial classification tasks applying 10-fold cross-validation on the training set (80%) to test the best performing model on the held-out test set (20%). SVM using term frequency-inverse document frequency (TF-IDF) was the best performing model for all four classification tasks, with accuracy ranging from 78.10 to 94.92% and a macro-averaged F1-score ranging from 0.58 to 0.83. Manually created features only increased model performance when filtering out non-strategies. Results suggest pipelined classification tasks (i.e., filtering out non-strategies; classification into intrinsic and extrinsic strategies; classification into participation-related constructs) for implementation into participation-focused pediatric rehabilitation interventions like Participation and Environment Measure Plus (PEM+) among caregivers who complete the Participation and Environment Measure for Children and Youth (PEM-CY). 
  •  
4.
  • Martinsson, John, et al. (author)
  • Blood Glucose Prediction with Variance Estimation Using Recurrent Neural Networks
  • 2020
  • In: Journal of Healthcare Informatics Research. - : Springer Science and Business Media LLC. - 2509-4971 .- 2509-498X. ; 4:1, s. 1-18
  • Journal article (peer-reviewed)abstract
    • Many factors affect blood glucose levels in type 1 diabetics, several of which vary largely both in magnitude and delay of the effect. Modern rapid-acting insulins generally have a peak time after 60–90 min, while carbohydrate intake can affect blood glucose levels more rapidly for high glycemic index foods, or slower for other carbohydrate sources. It is important to have good estimates of the development of glucose levels in the near future both for diabetic patients managing their insulin distribution manually, as well as for closed-loop systems making decisions about the distribution. Modern continuous glucose monitoring systems provide excellent sources of data to train machine learning models to predict future glucose levels. In this paper, we present an approach for predicting blood glucose levels for diabetics up to 1 h into the future. The approach is based on recurrent neural networks trained in an end-to-end fashion, requiring nothing but the glucose level history for the patient. Our approach obtains results that are comparable to the state of the art on the Ohio T1DM dataset for blood glucose level prediction. In addition to predicting the future glucose value, our model provides an estimate of its certainty, helping users to interpret the predicted levels. This is realized by training the recurrent neural network to parameterize a univariate Gaussian distribution over the output. The approach needs no feature engineering or data preprocessing and is computationally inexpensive. We evaluate our method using the standard root-mean-squared error (RMSE) metric, along with a blood glucose-specific metric called the surveillance error grid (SEG). We further study the properties of the distribution that is learned by the model, using experiments that determine the nature of the certainty estimate that the model is able to capture.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view