SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(A'Campo Willeke) "

Search: WFRF:(A'Campo Willeke)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • A'Campo, Willeke, et al. (author)
  • Arctic Tundra Land Cover Classification on the Beaufort Coast Using the Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery
  • 2021
  • In: Remote Sensing. - : MDPI AG. - 2072-4292. ; 13:23
  • Journal article (peer-reviewed)abstract
    • Arctic tundra landscapes are highly complex and are rapidly changing due to the warming climate. Datasets that document the spatial and temporal variability of the landscape are needed to monitor the rapid changes. Synthetic Aperture Radar (SAR) imagery is specifically suitable for monitoring the Arctic, as SAR, unlike optical remote sensing, can provide time series regardless of weather and illumination conditions. This study examines the potential of seasonal backscatter mechanisms in Arctic tundra environments for improving land cover classification purposes by using a time series of HH/HV TerraSAR-X (TSX) imagery. A Random Forest (RF) classification was applied on multi-temporal Sigma Nought intensity and multi-temporal Kennaugh matrix element data. The backscatter analysis revealed clear differences in the polarimetric response of water, soil, and vegetation, while backscatter signal variations within different vegetation classes were more nuanced. The RF models showed that land cover classes could be distinguished with 92.4% accuracy for the Kennaugh element data, compared to 57.7% accuracy for the Sigma Nought intensity data. Texture predictors, while improving the classification accuracy on the one hand, degraded the spatial resolution of the land cover product. The Kennaugh elements derived from TSX winter acquisitions were most important for the RF model, followed by the Kennaugh elements derived from summer and autumn acquisitions. The results of this study demonstrate that multi-temporal Kennaugh elements derived from dual-polarized X-band imagery are a powerful tool for Arctic tundra land cover mapping.
  •  
2.
  • Wagner, Julia, et al. (author)
  • High resolution mapping shows differences in soil carbon and nitrogen stocks in areas of varying landscape history in Canadian lowland tundra
  • 2023
  • In: Geoderma. - 0016-7061 .- 1872-6259. ; 438
  • Journal article (peer-reviewed)abstract
    • Soil organic carbon (SOC) in Arctic coastal polygonal tundra is vulnerable to climate change, especially in soils with occurrence of large amounts of ground ice. Pan-arctic studies of mapping SOC exist, yet they fail to describe the high spatial variability of SOC storage in permafrost landscapes. An important factor is the landscape history which determines landform development and consequently the spatial variability of SOC. Our aim was to map SOC stocks, and which environmental variables that determine SOC, in two adjacent coastal areas along Canadian Beaufort Sea coast with different glacial history. We used the machine learning technique random forest and environmental variables to map the spatial distribution of SOC stocks down to 1 m depth at a spatial resolution of 2 m for depth increments of 0-5, 5-15, 15-30, 30-60 and 60-100 cm. The results show that the two study areas had large differences in SOC stocks in the depth 60-100 cm due to high amounts of ground ice in one of the study areas. There are also differences in variable importance of the explanatory variables between the two areas. The area low in ground ice content had with 66.6 kg C/m(-2) more stored SOC than the area rich in ground ice content with 40.0 kg C/m(-2). However, this SOC stock could be potentially more vulnerable to climate change if ground ice melts and the ground subsides. The average N stock of the area low in ground ice is 3.77 kg m(-2) and of the area rich in ground ice is 3.83 kg m(-2). These findings support that there is a strong correlation between ground ice and SOC, with less SOC in ice-rich layers on a small scale. In addition to small scale studies of SOC mapping, detailed maps of ground ice content and distribution are needed for a validation of large-scale quantifications of SOC stocks and transferability of models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view