SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abass Khaled) "

Search: WFRF:(Abass Khaled)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Audouze, Karine, et al. (author)
  • Evidenced-Based Approaches to Support the Development of Endocrine-Mediated Adverse Outcome Pathways : Challenges and Opportunities
  • 2021
  • In: Frontiers in Toxicology. - : Frontiers Media S.A.. - 2673-3080. ; 3
  • Journal article (peer-reviewed)abstract
    • A transformation of regulatory toxicology is underway to meet the demands of testing increasing numbers of chemicals whilst reducing reliance on in vivo models. This transformation requires a shift from chemical safety assessment largely based on direct empirical observation of apical toxicity outcomes in whole organisms to predictive approaches in which outcomes and risks are inferred from accumulated mechanistic understanding. 
  •  
2.
  • Bui, Thuy T., et al. (author)
  • Applying a modified systematic review and integrated assessment framework (SYRINA) - a case study on triphenyl phosphate
  • 2023
  • In: Environmental Science. - 2050-7887 .- 2050-7895. ; 26:2, s. 380-399
  • Journal article (peer-reviewed)abstract
    • This work presents a case study in applying a systematic review framework (SYRINA) to the identification of chemicals as endocrine disruptors. The suitability and performance of the framework is tested with regard to the widely accepted World Health Organization definition of an endocrine disruptor (ED). The endocrine disrupting potential of triphenyl phosphate (TPP), a well-studied flame retardant reported to exhibit various endocrine related effects was assessed. We followed the 7 steps of the SYRINA framework, articulating the research objective via Populations, Exposures, Comparators, Outcomes (PECO) statements, performed literature search and screening, conducted study evaluation, performed data extraction and summarized and integrated the evidence. Overall, 66 studies, consisting of in vivo, in vitro and epidemiological data, were included. We concluded that triphenyl phosphate could be identified as an ED based on metabolic disruption and reproductive function. We found that the tools used in this case study and the optimizations performed on the framework were suitable to assess properties of EDs. A number of challenges and areas for methodological development in systematic appraisal of evidence relating to endocrine disrupting potential were identified; significant time and effort were needed for the analysis of in vitro mechanistic data in this case study, thus increasing the workload and time needed to perform the systematic review process. Further research and development of this framework with regards to grey literature (non-peer-reviewed literature) search, harmonization of study evaluation methods, more consistent evidence integration approaches and a pre-defined method to assess links between adverse effect and endocrine activity are recommended. It would also be advantageous to conduct more case studies for a chemical with less data than TPP.
  •  
3.
  • Carlsson, Pernilla, et al. (author)
  • Polychlorinated biphenyls (PCBs) as sentinels for the elucidation of Arctic environmental change processes : a comprehensive review combined with ArcRisk project results
  • 2018
  • In: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 25:23, s. 22499-22528
  • Research review (peer-reviewed)abstract
    • Polychlorinated biphenyls (PCBs) can be used as chemical sentinels for the assessment of anthropogenic influences on Arctic environmental change. We present an overview of studies on PCBs in the Arctic and combine these with the findings from ArcRisk-a major European Union-funded project aimed at examining the effects of climate change on the transport of contaminants to and their behaviour of in the Arctic-to provide a case study on the behaviour and impact of PCBs over time in the Arctic. PCBs in the Arctic have shown declining trends in the environment over the last few decades. Atmospheric long-range transport from secondary and primary sources is the major input of PCBs to the Arctic region. Modelling of the atmospheric PCB composition and behaviour showed some increases in environmental concentrations in a warmer Arctic, but the general decline in PCB levels is still the most prominent feature. 'Within-Arctic' processing of PCBs will be affected by climate change-related processes such as changing wet deposition. These in turn will influence biological exposure and uptake of PCBs. The pan-Arctic rivers draining large Arctic/sub-Arctic catchments provide a significant source of PCBs to the Arctic Ocean, although changes in hydrology/sediment transport combined with a changing marine environment remain areas of uncertainty with regard to PCB fate. Indirect effects of climate change on human exposure, such as a changing diet will influence and possibly reduce PCB exposure for indigenous peoples. Body burdens of PCBs have declined since the 1980s and are predicted to decline further.
  •  
4.
  • Sripada, Kam, et al. (author)
  • A Children's Health Perspective on Nano- and Microplastics
  • 2022
  • In: Environmental Health Perspectives. - 1552-9924. ; 130:1
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Pregnancy, infancy, and childhood are sensitive windows for environmental exposures. Yet the health effects of exposure to nano- and microplastics (NMPs) remain largely uninvestigated or unknown. Although plastic chemicals are a well-established research topic, the impacts of plastic particles are unexplored, especially with regard to early life exposures.OBJECTIVES: This commentary aims to summarize the knowns and unknowns around child- and pregnancy-relevant exposures to NMPs via inhalation, placental transfer, ingestion and breastmilk, and dermal absorption.METHODS: A comprehensive literature search to map the state of the science on NMPs found 37 primary research articles on the health relevance of NMPs during early life and revealed major knowledge gaps in the field. We discuss opportunities and challenges for quantifying child-specific exposures (e.g., NMPs in breastmilk or infant formula) and health effects, in light of global inequalities in baby bottle use, consumption of packaged foods, air pollution, hazardous plastic disposal, and regulatory safeguards. We also summarize research needs for linking child health and NMP exposures and address the unknowns in the context of public health action.DISCUSSION: Few studies have addressed child-specific sources of exposure, and exposure estimates currently rely on generic assumptions rather than empirical measurements. Furthermore, toxicological research on NMPs has not specifically focused on child health, yet children's immature defense mechanisms make them particularly vulnerable. Apart from few studies investigating the placental transfer of NMPs, the physicochemical properties (e.g., polymer, size, shape, charge) driving the absorption, biodistribution, and elimination in early life have yet to be benchmarked. Accordingly, the evidence base regarding the potential health impacts of NMPs in early life remains sparse. Based on the evidence to date, we provide recommendations to fill research gaps, stimulate policymakers and industry to address the safety of NMPs, and point to opportunities for families to reduce early life exposures to plastic. https://doi.org/10.1289/EHP9086.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view