SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abassi Yasmin) "

Search: WFRF:(Abassi Yasmin)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Huang, Xiaoli, et al. (author)
  • The Molecular Basis for Inhibition of Stemlike Cancer Cells by Salinomycin
  • 2018
  • In: ACS Central Science. - : American Chemical Society (ACS). - 2374-7943 .- 2374-7951. ; 4:6, s. 760-767
  • Journal article (peer-reviewed)abstract
    • Tumors are phenotypically heterogeneous and include subpopulations of cancer cells with stemlike properties. The natural product salinomycin, a K+-selective ionophore, was recently found to exert selectivity against such cancer stem cells. This selective effect is thought to be due to inhibition of the Wnt signaling pathway, but the mechanistic basis remains unclear. Here, we develop a functionally competent fluorescent conjugate of salinomycin to investigate the molecular mechanism of this compound. By subcellular imaging, we demonstrate a rapid cellular uptake of the conjugate and accumulation in the endoplasmic reticulum (ER). This localization is connected to induction of Ca2+ release from the ER into the cytosol. Depletion of Ca2+ from the ER induces the unfolded protein response as shown by global mRNA analysis and Western blot analysis of proteins in the pathway. In particular, salinomycin-induced ER Ca2+ depletion up-regulates C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating β-catenin. The increased cytosolic Ca2+ also activates protein kinase C, which has been shown to inhibit Wnt signaling. These results reveal that salinomycin acts in the ER membrane of breast cancer cells to cause enhanced Ca2+ release into the cytosol, presumably by mediating a counter-flux of K+ ions. The clarified mechanistic picture highlights the importance of ion fluxes in the ER as an entry to inducing phenotypic effects and should facilitate rational development of cancer treatments.
  •  
2.
  • Jemaà, Mohamed, et al. (author)
  • Gene expression signature of acquired chemoresistance in neuroblastoma cells
  • 2020
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:18
  • Journal article (peer-reviewed)abstract
    • Drug resistance of childhood cancer neuroblastoma is a serious clinical problem. Patients with relapsed disease have a poor prognosis despite intense treatment. In the present study, we aimed to identify chemoresistance gene expression signatures in vincristine resistant neuroblastoma cells. We found that vincristine-resistant neuroblastoma cells formed larger clones and survived under reduced serum conditions as compared with non-resistant parental cells. To identify the possible mechanisms underlying vincristine resistance in neuroblastoma cells, we investigated the expression profiles of genes known to be involved in cancer drug resistance. This specific gene expression patterns could predict the behavior of a tumor in response to chemotherapy and for predicting the prognosis of high-risk neuroblastoma patients. Our signature could help chemoresistant neuroblastoma patients in avoiding useless and harmful chemotherapy cycles.
  •  
3.
  • Jemaà, Mohamed, et al. (author)
  • Reversine inhibits Colon Carcinoma Cell Migration by Targeting JNK1
  • 2018
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Journal article (peer-reviewed)abstract
    • Colorectal cancer is one of the most commonly diagnosed cancers and the third most common cause of cancer-related death. Metastasis is the leading reason for the resultant mortality of these patients. Accordingly, development and characterization of novel anti-cancer drugs limiting colorectal tumor cell dissemination and metastasis are needed. In this study, we found that the small molecule Reversine reduces the migration potential of human colon carcinoma cells in vitro. A coupled kinase assay with bio-informatics approach identified the c-Jun N-terminal kinase (JNK) cascade as the main pathway inhibited by Reversine. Knockdown experiments and pharmacological inhibition identified JNK1 but not JNK2, as a downstream effector target in cancer cell migration. Xenograft experiments confirm the effect of JNK inhibition in the metastatic potential of colon cancer cells. These results highlight the impact of individual JNK isoforms in cancer cell metastasis and propose Reversine as a novel anti-cancer molecule for treatment of colon cancer patients.
  •  
4.
  • Sime, Wondossen, et al. (author)
  • BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma article
  • 2018
  • In: Cell Death and Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 9:5
  • Journal article (peer-reviewed)abstract
    • BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.
  •  
5.
  • Sime, Wondossen, et al. (author)
  • Discovery of epi-enprioline as a novel drug for the treatment of vincristine resistant neuroblastoma
  • 2020
  • In: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 21:18
  • Journal article (peer-reviewed)abstract
    • Neuroblastoma is a childhood solid tumour originating from undifferentiated neural progenitor cells of the sympathetic nervous system. Drug resistance of childhood cancer neuroblastoma is a serious clinical problem. In the present study, we aimed to identify novel drugs that can inhibit the growth and survival of chemoresistant neuroblastoma. High-throughput screening identified a small molecule, epi-enprioline that was able to induce apoptosis of vincristine-resistant neuroblastoma cells via the mitochondrial apoptotic pathway. Epi-enprioline reduced tumour growth in multiple preclinical models, including an orthotopic neuroblastoma patient-derived xenograft model in vivo. In summary, our data suggest that epi-enprioline can be considered as a lead compound for the treatment of vincristine-resistant neuroblastoma uncovering a novel strategy, which can be further explored as a treatment for drug-resistant neuroblastoma.
  •  
6.
  • Simon Serrano, Sonia, et al. (author)
  • Inhibition of mitotic kinase Mps1 promotes cell death in neuroblastoma
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 11997-11997
  • Journal article (peer-reviewed)abstract
    • Neuroblastoma is the most common paediatric cancer type. Patients diagnosed with high-risk neuroblastoma have poor prognosis and occasionally tumours relapse. As a result, novel treatment strategies are needed for relapse and refractory neuroblastoma patients. Here, we found that high expression of Mps1 kinase (mitotic kinase Monopolar Spindle 1) was associated with relapse-free neuroblastoma patient outcomes and poor overall survival. Silencing and inhibition of Mps1 in neuroblastoma or PDX-derived cells promoted cell apoptosis via the caspase-dependent mitochondrial apoptotic pathway. The mechanism of cell death upon Mps1 inhibition was dependent on the polyploidization/aneuploidization of the cells before undergoing mitotic catastrophe. Furthermore, tumour growth retardation was confirmed in a xenograft mouse model after Mps1-inhibitor treatment. Altogether, these results suggest that Mps1 expression and inhibition can be considered as a novel prognostic marker as well as a therapeutic strategy for the treatment of high-risk neuroblastoma patients.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view