SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Abbaspour Sara 1984 ) "

Search: WFRF:(Abbaspour Sara 1984 )

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbaspour, Saadeh, et al. (author)
  • A comparative analysis of hybrid deep learning models for human activity recognition
  • 2020
  • In: Sensors. - : MDPI AG. - 1424-8220. ; 20:19
  • Journal article (peer-reviewed)abstract
    • Recent advances in artificial intelligence and machine learning (ML) led to effective methods and tools for analyzing the human behavior. Human Activity Recognition (HAR) is one of the fields that has seen an explosive research interest among the ML community due to its wide range of applications. HAR is one of the most helpful technology tools to support the elderly’s daily life and to help people suffering from cognitive disorders, Parkinson’s disease, dementia, etc. It is also very useful in areas such as transportation, robotics and sports. Deep learning (DL) is a branch of ML based on complex Artificial Neural Networks (ANNs) that has demonstrated a high level of accuracy and performance in HAR. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are two types of DL models widely used in the recent years to address the HAR problem. The purpose of this paper is to investigate the effectiveness of their integration in recognizing daily activities, e.g., walking. We analyze four hybrid models that integrate CNNs with four powerful RNNs, i.e., LSTMs, BiLSTMs, GRUs and BiGRUs. The outcomes of our experiments on the PAMAP2 dataset indicate that our proposed hybrid models achieve an outstanding level of performance with respect to several indicative measures, e.g., F-score, accuracy, sensitivity, and specificity. © 2020 by the authors.
  •  
2.
  • Abbaspour, Sara, 1984-, et al. (author)
  • ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA
  • 2015
  • In: Studies in Health Technology and Informatics, Volume 211. - 9781614995159 ; , s. 91-97
  • Conference paper (peer-reviewed)abstract
    • This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact components from the original EMG signal. Components that correspond to the ECG artifact are then identified by an automated detection algorithm and are subsequently removed using a conventional high pass filter. Finally, the results of the proposed method are compared with wavelet transform, ICA, adaptive filter and empirical mode decomposition-ICA methods. The automated artifact removal method proposed in this study successfully removes the ECG artifacts from EMG signals with a signal to noise ratio value of 9.38 while keeping the distortion of original EMG to a minimum.
  •  
3.
  • Abbaspour, Sara, 1984- (author)
  • Electromyogram Signal Enhancement and Upper-Limb Myoelectric Pattern Recognition
  • 2019
  • Doctoral thesis (other academic/artistic)abstract
    • Losing a limb causes difficulties in our daily life. To regain the ability to live an independent life, artificial limbs have been developed. Hand prostheses belong to a group of artificial limbs that can be controlled by the user through the activity of the remnant muscles above the amputation. Electromyogram (EMG) is one of the sources that can be used for control methods for hand prostheses. Surface EMGs are powerful, non-invasive tools that provide information about neuromuscular activity of the subjected muscle, which has been essential to its use as a source of control for prosthetic limbs. However, the complexity of this signal introduces a big challenge to its applications. EMG pattern recognition to decode different limb movements is an important advancement regarding the control of powered prostheses. It has the potential to enable the control of powered prostheses using the generated EMG by muscular contractions as an input. However, its use has yet to be transitioned into wide clinical use. Different algorithms have been developed in state of the art to decode different movements; however, the challenge still lies in different stages of a successful hand gesture recognition and improvements in these areas could potentially increase the functionality of powered prostheses. This thesis firstly focuses on improving the EMG signal’s quality by proposing novel and advanced filtering techniques. Four efficient approaches (adaptive neuro-fuzzy inference system-wavelet, artificial neural network-wavelet, adaptive subtraction and automated independent component analysis-wavelet) are proposed to improve the filtering process of surface EMG signals and effectively eliminate ECG interferences. Then, the offline performance of different EMG-based recognition algorithms for classifying different hand movements are evaluated with the aim of obtaining new myoelectric control configurations that improves the recognition stage. Afterwards, to gain proper insight on the implementation of myoelectric pattern recognition, a wide range of myoelectric pattern recognition algorithms are investigated in real time. The experimental result on 15 healthy volunteers suggests that linear discriminant analysis (LDA) and maximum likelihood estimation (MLE) outperform other classifiers. The real-time investigation illustrates that in addition to the LDA and MLE, multilayer perceptron also outperforms the other algorithms when compared using classification accuracy and completion rate.
  •  
4.
  •  
5.
  •  
6.
  • Abbaspour, Sara, 1984- (author)
  • Proposing Combined Approaches to Remove ECG Artifacts from Surface EMG Signals
  • 2015
  • Licentiate thesis (other academic/artistic)abstract
    • Electromyography (EMG) is a tool routinely used for a variety of applications in a very large breadth of disciplines. However, this signal is inevitably contaminated by various artifacts originated from different sources. Electrical activity of heart muscles, electrocardiogram (ECG), is one of sources which affects the EMG signals due to the proximity of the collection sites to the heart and makes its analysis non-reliable. Different methods have been proposed to remove ECG artifacts from surface EMG signals; however, in spite of numerous attempts to eliminate or reduce this artifact, the problem of accurate and effective de-noising of EMG still remains a challenge. In this study common methods such as high pass filter (HPF), gating method, spike clipping, hybrid technique, template subtraction, independent component analysis (ICA), wavelet transform, wavelet-ICA, artificial neural network (ANN), and adaptive noise canceller (ANC) and adaptive neuro-fuzzy inference system (ANFIS) are used to remove ECG artifacts from surface EMG signals and their accuracy and effectiveness is investigated. HPF, gating method and spike clipping are fast; however they remove useful information from EMG signals. Hybrid technique and ANC are time consuming. Template subtraction requires predetermined QRS pattern. Using wavelet transform some artifacts remain in the original signal and part of the desired signal is removed. ICA requires multi-channel signals. Wavelet-ICA approach does not require multi-channel signals; however, it is user-dependent. ANN and ANFIS have good performance, but it is possible to improve their results by combining them with other techniques. For some applications of EMG signals such as rehabilitation, motion control and motion prediction, the quality of EMG signals is very important. Furthermore, the artifact removal methods need to be online and automatic. Hence, efficient methods such as ANN-wavelet, adaptive subtraction and automated wavelet-ICA are proposed to effectively eliminate ECG artifacts from surface EMG signals. To compare the results of the investigated methods and the proposed methods in this study, clean EMG signals from biceps and deltoid muscles and ECG artifacts from pectoralis major muscle are recorded from five healthy subjects to create 10 channels of contaminated EMG signals by adding the recorded ECG artifacts to the clean EMG signals. The artifact removal methods are also applied to the 10 channels of real contaminated EMG signals from pectoralis major muscle of the left side. Evaluation criteria such as signal to noise ratio, relative error, correlation coefficient, elapsed time and power spectrum density are used to evaluate the performance of the proposed methods. It is found that the performance of the proposed ANN-wavelet method is superior to the other methods with a signal to noise ratio, relative error and correlation coefficient of 15.53, 0.01 and 0.98 respectively.
  •  
7.
  • Abbaspour, Sara, 1984-, et al. (author)
  • Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
  • 2014
  • In: Biomedical Physics and Engineering. - 2251-7200. ; 4:1, s. 33-38
  • Journal article (peer-reviewed)abstract
    • Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful. Objective: Removing electrocardiogram contamination from electromyogram signals. Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and electrocardiogram signal were recorded from leg muscles, the pectoralis major muscle of the left side and V4, respectively. After the pre-processing, contaminated electromyogram signal is simulated with a combination of clean electromyogram and electrocardiogram artifact. Then, contaminated electromyogram is cleaned using adaptive subtraction method. This method contains some steps; (1) QRS detection, (2) formation of electrocardiogram template by averaging the electrocardiogram complexes, (3) using low pass filter to remove undesirable artifacts, (4) subtraction. Results: Performance of our method is evaluated using qualitative criteria, power spectrum density and coherence and quantitative criteria signal to noise ratio, relative error and cross correlation. The result of signal to noise ratio, relative error and cross correlation is equal to 10.493, 0.04 and %97 respectively. Finally, there is a comparison between proposed method and some existing methods. Conclusion: The result indicates that adaptive subtraction method is somewhat effective to remove electrocardiogram artifact from contaminated electromyogram signal and has an acceptable result.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view