SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Adan Roger A.H.) "

Search: WFRF:(Adan Roger A.H.)

  • Result 1-10 of 41
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Watson, Hunna J., et al. (author)
  • Common Genetic Variation and Age of Onset of Anorexia Nervosa
  • 2022
  • In: BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE. - : Elsevier BV. - 2667-1743. ; 2:4, s. 368-378
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Genetics and biology may influence the age of onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to age of onset of AN and to investigate the genetic associations between age of onset of AN and age at menarche.METHODS: A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed, which included 9335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age of onset, early-onset AN (,13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses.RESULTS: Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (single nucleotide polymorphism-h2) were 0.01-0.04 for age of onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early-and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age of onset and early-onset AN estimated from independent GWASs significantly predicted age of onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early -onset AN.CONCLUSIONS: Our results provide evidence consistent with a common variant genetic basis for age of onset and implicate biological pathways regulating menarche and reproduction.
  •  
2.
  • Adage, Tiziana, et al. (author)
  • Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats
  • 2001
  • In: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 21:10, s. 3639-3645
  • Journal article (peer-reviewed)abstract
    • The CNS melanocortin (MC) system is implicated as a mediator of the central effects of leptin, and reduced activity of the CNS MC system promotes obesity in both rodents and humans. Because activation of CNS MC receptors has direct effects on autonomic outflow and metabolism, we hypothesized that food intake- independent mechanisms contribute to development of obesity induced by pharmacological blockade of MC receptors in the brain and that changes in hypothalamic neuropeptidergic systems known to regulate weight gain [i. e., corticotropin-releasing hormone (CRH), cocaine- amphetamine- related transcript (CART), proopiomelanocortin (POMC), and neuropeptide Y (NPY)] would trigger this effect. Relative to vehicle- treated controls, third intracerebroventricular (i3vt) administration of the MC receptor antagonist SHU9119 to rats for 11 d doubled food and water intake (toward the end of treatment) and increased body weight (similar to 14%) and fat content (similar to 90%), hepatic glycogen content (similar to 40%), and plasma levels of cholesterol (similar to 48%), insulin (similar to 259%), glucagon (similar to 80%), and leptin (similar to 490%), whereas spontaneous locomotor activity and body temperature were reduced. Pair- feeding of i3vt SHU9119- treated animals to i3vt vehicle- treated controls normalized plasma levels of insulin, glucagon, and hepatic glycogen content, but only partially reversed the elevations of plasma cholesterol (similar to 31%) and leptin (similar to 104%) and body fat content (similar to 27%). Reductions in body temperature and locomotor activity induced by i3vt SHU9119 were not reversed by pair feeding, but rather were more pronounced. None of the effects found can be explained by peripheral action of the compound. The obesity effects occurred despite a lack in neuropeptide expression responses in the neuroanatomical range selected across the arcuate (i. e., CART, POMC, and NPY) and paraventricular (i. e., CRH) hypothalamus. The results indicate that reduced activity of the CNS MC pathway promotes fat deposition via both food intake- dependent and -independent mechanisms.
  •  
3.
  • Adan, Roger A. H., et al. (author)
  • Nutritional psychiatry: Towards improving mental health by what you eat
  • 2019
  • In: European Neuropsychopharmacology. - : Elsevier BV. - 0924-977X. ; 29:12, s. 1321-1332
  • Journal article (peer-reviewed)abstract
    • Does it matter what we eat for our mental health? Accumulating data suggests that this may indeed be the case and that diet and nutrition are not only critical for human physiology and body composition, but also have significant effects on mood and mental wellbeing. While the determining factors of mental health are complex, increasing evidence indicates a strong association between a poor diet and the exacerbation of mood disorders, including anxiety and depression, as well as other neuropsychiatric conditions. There are common beliefs about the health effects of certain foods that are not supported by solid evidence and the scientific evidence demonstrating the unequivocal link between nutrition and mental health is only beginning to emerge. Current epidemiological data on nutrition and mental health do not provide information about causality or underlying mechanisms. Future studies should focus on elucidating mechanism. Randomized controlled trials should be of high quality, adequately powered and geared towards the advancement of knowledge from population-based observations towards personalized nutrition. Here, we provide an overview of the emerging field of nutritional psychiatry, exploring the scientific evidence exemplifying the importance of a well-balanced diet for mental health. We conclude that an experimental medicine approach and a mechanistic understanding is required to provide solid evidence on which future policies on diet and nutrition for mental health can be based. (C) 2019 The Author(s). Published by Elsevier B.V.
  •  
4.
  • Adan, Roger A. H., et al. (author)
  • Translational genetics; expectations for eating disorders and other psychiatric disorders : Translationele genetica: verwachtingen voor eetstoornissen en andere psychiatrische stoornissen
  • 2022
  • In: Tijdschrift voor Psychiatrie. - 0303-7339. ; 64:2022-5, s. 304-308
  • Journal article (peer-reviewed)abstract
    • Background Translational (genetic) research focuses on the translation of preclinical research into practice. While many genetic studies have been conducted in recent years, the results do not simply translate to the clinic. Aim To visualize the steps through which translational genetic research contributes to the unraveling of the biological backgrounds of psychiatric disorders, in particular of eating disorders. Method Literature review. Results Genetic studies have unraveled a mechanism underlying the hunger and satiety system. There is hope that genome-wide studies of eating disorders will lead to identification of neural circuits in which associated genes cluster. New techniques, such as opto- and chemogenetics, provide the opportunity to define the precise role of these circuits in eating disorders. Conclusion New techniques in molecular neuroscience allow the unravelling of the complexity of how the brain works and some of those techniques (such as chemogenetics) are being further developed for application in humans. However, it will be years before we can definitively translate this into the treatment of psychiatric disorders.
  •  
5.
  • Bryois, J., et al. (author)
  • Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease
  • 2020
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 52:5, s. 482-493
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson’s disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson’s disease. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
  •  
6.
  • Cardona Cano, Sebastian, et al. (author)
  • Role of ghrelin in the pathophysiology of eating disorders: Implications for pharmacotherapy
  • 2012
  • In: CNS Drugs. - : Springer Science and Business Media LLC. - 1172-7047 .- 1179-1934. ; 26, s. 281-296
  • Research review (peer-reviewed)abstract
    • Ghrelin is the only known circulating orexigenic hormone. It increases food intake by interacting with hypothalamic and brainstem circuits involved in energy balance, as well as reward-related brain areas. A heightened gut-brain ghrelin axis is an emerging feature of certain eating disorders such as anorexia nervosa and Prader-Willi syndrome. In common obesity, ghrelin levels are lowered, whereas post-meal ghrelin levels remain higher than in lean individuals. Agents that interfere with ghrelin signalling have therapeutic potential for eating disorders, including obesity. However, most of these drugs are only in the preclinical phase of development. Data obtained so far suggest that ghrelin agonists may have potential in the treatment of anorexia nervosa, while ghrelin antagonists seem promising for other eating disorders such as obesity and Prader-Willi syndrome. However, large clinical trials are needed to evaluate the efficacy and safety of these drugs. © 2012 Adis Data Information BV. All rights reserved.
  •  
7.
  • Coumans, J. M. J., et al. (author)
  • Emotion-driven impulsiveness but not decision-making ability and cognitive inflexibility predicts weight status in adults
  • 2019
  • In: Appetite. - : Elsevier BV. - 0195-6663. ; 142
  • Journal article (peer-reviewed)abstract
    • In this study we aimed to determine whether decision-making ability, cognitive inflexibility and emotion-driven impulsiveness are associated with weight status as expressed by body mass index (BMI), percentage body fat, waist circumference and skinfold thickness in adults from eight different European countries taking part in the I.Family study. The Bechara Gambling Task was used to assess decision-making ability (n = 1717). The Berg Card Sorting Test was used to measure cognitive inflexibility (n = 1509). Lastly, the negative urgency subscale from the UPPS-P Impulsive Behavior Scale was used to measure emotion-driven impulsiveness (n = 4450). Hierarchical regression analyses showed that more emotion-driven impulsiveness was statistically significantly associated with a higher BMI, a higher percentage body fat, and a larger waist circumference in adults, controlling for age, sex, socioeconomic status, country and binge eating; but not with skinfold thickness. Cognitive inflexibility and decision-making ability were not statistically significantly associated with any of the weight status related variables. These results support that impulsivity in response to negative emotions, but not decision-making ability or cognitive inflexibility, is associated with the susceptibility to excessive weight (as indicated by a higher BMI, a higher percentage body fat, and a larger waist circumference). In people behaving impulsively when emotional, focusing on reducing negative affect or improving coping skills is of interest in interventions targeting obesity. Clinical trial registration: The I.Family study is registered in the ISRCTN registry (ISRCTN62310987) on February 23, 2018. © 2019
  •  
8.
  • de Git, K. C. G., et al. (author)
  • Is leptin resistance the cause or the consequence of diet-induced obesity?
  • 2018
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 0307-0565 .- 1476-5497. ; 42:8, s. 1445-1457
  • Journal article (peer-reviewed)abstract
    • Background/objectives Obesity is strongly associated with leptin resistance. It is unclear whether leptin resistance results from the (over) consumption of energy-dense diets or if reduced leptin sensitivity is also a pre-existing factor in rodent models of diet-induced obesity (DIO). We here tested whether leptin sensitivity on a chow diet predicts subsequent weight gain and leptin sensitivity on a free choice high-fat high-sucrose (fcHFHS) diet. Methods Based upon individual leptin sensitivity on chow diet, rats were grouped in leptin sensitive (LS, n = 22) and leptin resistant (LR, n = 19) rats (P = 0.000), and the development of DIO on a fcHFHS diet was compared. The time-course of leptin sensitivity was measured over weeks in individual rats. Results Both on a chow and a fcHFHS diet, high variability in leptin sensitivity was observed between rats, but not over time per individual rat. Exposure to the fcHFHS diet revealed that LR rats were more prone to develop DIO (P = 0.013), which was independent of caloric intake (p >= 0.320) and the development of diet-induced leptin resistance (P = 0.769). Reduced leptin sensitivity in LR compared with LS rats before fcHFHS diet exposure, was associated with reduced leptin-induced phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the dorsomedial and ventromedial hypothalamus (P <= 0.049), but not the arcuate nucleus (P = 0.558). Conclusions A pre-existing reduction in leptin sensitivity determines the susceptibility to develop excessive DIO after fcHFHS diet exposure. Rats with a pre-existing reduction in leptin sensitivity develop excessive DIO without eating more calories or altering their leptin sensitivity.
  •  
9.
  • de Vrind, V. A. J., et al. (author)
  • Effects of GABA and Leptin Receptor-Expressing Neurons in the Lateral Hypothalamus on Feeding, Locomotion, and Thermogenesis
  • 2019
  • In: Obesity. - : Wiley. - 1930-7381 .- 1930-739X. ; 27:7, s. 1123-1132
  • Journal article (peer-reviewed)abstract
    • Objective: The lateral hypothalamus (LH) is known for its role in feeding, and it also regulates other aspects of energy homeostasis. How genetically defined LH neuronal subpopulations mediate LH effects on energy homeostasis remains poorly understood. The behavioral effects of chemogenetically activating LH gamma-aminobutyric acid (GABA) and the more selective population of LH GABA neurons that coexpress the leptin receptor (LepR) were compared. Methods: LepR-cre and VGAT-cre mice were injected with AAV5-hSyn-DIO-hM3DGq-mCherry in the LH. The behavioral effects of LH GABA or LH LepR neuronal activation on feeding, locomotion, thermogenesis, and body weight were assessed. Results: The activation of LH GABA neurons increased body temperature (P ≤ 0.008) and decreased body weight (P ≤ 0.01) despite decreased locomotor activity (P = 0.03) and transiently increased chow intake (P ≤ 0.009). Also, similar to other studies, this study found that activation of LH GABA neurons induced gnawing on both food and nonfood (P = 0.001) items. Activation of LH LepR neurons decreased body weight (P ≤ 0.01) and chow intake when presented on the cage floor (P ≤ 0.04) but not when presented in the cage top and increased locomotor activity (P = 0.002) and body temperature (P = 0.03). Conclusions: LH LepR neurons are a subset of LH GABA neurons, and LH LepR activation more specifically regulates energy homeostasis to promote a negative energy balance. © 2019 The Authors. Obesity published by Wiley Periodicals, Inc. on behalf of The Obesity Society (TOS)
  •  
10.
  • de Vrind, V. A. J., et al. (author)
  • Leptin Receptor Expressing Neurons in the Substantia Nigra Regulate Locomotion, and in The Ventral Tegmental Area Motivation and Feeding
  • 2021
  • In: Frontiers in Endocrinology. - : Frontiers Media SA. - 1664-2392. ; 12
  • Journal article (peer-reviewed)abstract
    • Leptin is an anorexigenic hormone, important in the regulation of body weight. Leptin plays a role in food reward, feeding, locomotion and anxiety. Leptin receptors (LepR) are expressed in many brain areas, including the midbrain. In most studies that target the midbrain, either all LepR neurons of the midbrain or those of the ventral tegmental area (VTA) were targeted, but the role of substantia nigra (SN) LepR neurons has not been investigated. These studies have reported contradicting results regarding motivational behavior for food reward, feeding and locomotion. Since not all midbrain LepR mediated behaviors can be explained by LepR neurons in the VTA alone, we hypothesized that SN LepR neurons may provide further insight. We first characterized SN LepR and VTA LepR expression, which revealed LepR expression mainly on DA neurons. To further understand the role of midbrain LepR neurons in body weight regulation, we chemogenetically activated VTA LepR or SN LepR neurons in LepR-cre mice and tested for motivational behavior, feeding and locomotion. Activation of VTA LepR neurons in food restricted mice decreased motivation for food reward (p=0.032) and food intake (p=0.020), but not locomotion. In contrast, activation of SN LepR neurons in food restricted mice decreased locomotion (p=0.025), but not motivation for food reward or food intake. Our results provide evidence that VTA LepR and SN LepR neurons serve different functions, i.e. activation of VTA LepR neurons modulated motivation for food reward and feeding, while SN LepR neurons modulated locomotor activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 41

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view