SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Agbaje Oluwatoosin B. A.) "

Search: WFRF:(Agbaje Oluwatoosin B. A.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Agbaje, Oluwatoosin B. A., et al. (author)
  • Biomacromolecules in recent phosphate-shelled brachiopods : identification and characterization of chitin matrix
  • 2021
  • In: Journal of Materials Science. - : Springer Nature. - 0022-2461 .- 1573-4803. ; 56:36, s. 19884-19898
  • Journal article (peer-reviewed)abstract
    • Phosphate-shelled brachiopods differ in filter-feeding lifestyle, with Lingula anatina an active infaunal burrower, and Discinisca tenuis a shallow marine epibenthic animal. The shells of these animals are built of organophosphatic constituents, the organic fibres/sheets reinforced with calcium phosphate to provide a sophisticated ultrastructural robustness. This investigation examined the nature of the organic fibres in order to improve understanding of how living organisms produce hierarchically structured biomaterials. Unlike powdered samples commonly used in previous studies, organic fibres were isolated for the first time and the shell fractions were purified, in order to study the content and nature of the biopolymer fibres. Biochemical methods including Calcofluor staining revealed a chitin matrix. Ultrastructural analysis, thermal gravimetric analysis, and spectroscopic analyses show that the core polysaccharide framework is composed of layers of β-chitin sheets and/or fibrils that are coated with a fibrous organic matrix. There is more chitin matrix in the L. anatina shells (26.6 wt.%) compared to the D. tenuis shells (12.9 wt.%). Taken together, the data show that the chitin matrix contributes to increased skeletal strength, making L. anatina highly adapted for life as an active burrower. In comparison, D. tenuis contains less chitin and lives as attached epibenthos in a shallow marine environment.
  •  
2.
  • Agbaje, Oluwatoosin B. A., et al. (author)
  • Characterization of organophosphatic brachiopod shells : spectroscopic assessment of collagen matrix and biomineral components
  • 2020
  • In: RSC Advances. - 2046-2069. ; 10, s. 38456-38467
  • Journal article (peer-reviewed)abstract
    • The shells of linguloid brachiopods such as Lingula and Discinisca are inorganic–organic nanocomposites with a mineral phase of calcium phosphate (Ca-phosphate). Collagen, the main extracellular matrix in Ca-phosphatic vertebrate skeletons, has not previously been clearly resolved at the molecular level in organophosphatic brachiopods. Here, modern and recently-alive linguliform brachiopod shells of Lingula and Discinisca have been studied by microRaman spectroscopy, Fourier transform infrared spectroscopy, field emission gun scanning electron microscopy, and thermal gravimetric analysis. For the first time, biomineralized collagen matrix and Ca-phosphate components were simultaneously identified, showing that the collagen matrix is an important moiety in organophosphatic brachiopod shells, in addition to prevalent chitin. Stabilized nanosized apatitic biominerals (up to ∼50 nm) permeate the framework of organic fibrils. There is a ∼2.5-fold higher wt% of carbonate (CO32−) in Lingula versus Discinisca shells. Both microRaman spectroscopy and infrared spectra show transient amorphous Ca-phosphate and octacalcium phosphate components. For the first time, trivalent moieties at ∼1660 cm−1 and divalent moieties at ∼1690 cm−1 in the amide I spectral region were identified. These are related to collagen cross-links that are abundant in mineralized tissues, and could be important features in the biostructural and mechanical properties of Ca-phosphate shell biominerals. This work provides a critical new understanding of organophosphatic brachiopod shells, which are some of the earliest examples of biomineralization in still-living animals that appeared in the Cambrian radiation.
  •  
3.
  • Agbaje, Oluwatoosin B. A., et al. (author)
  • Organic biopolymers of venus clams : Collagen-related matrix in the bivalve shells with crossed-lamellar ultrastructure
  • 2021
  • In: Biochemistry and biophysics reports. - : Elsevier. - 2405-5808. ; 26
  • Journal article (peer-reviewed)abstract
    • Background: Biochemical studies and spectroscopic techniques have shown that chitin-silk fibroins are common in nacroprismatic bivalve shells. However, the nature of organic biopolymers in the less well studied shell architectures, such as crossed lamellar shells, remain unknown. Here, two venus shells, Callista disrupta and Callista kingii, with crossed lamellar ultrastructure have been studied.Methods: We employed thermal gravimetric analysis, optical-, confocal- and scanning electron-microscopes, gel-sodium dodecyl sulfate (gel-SDS), FTIR, ultra-performance liquid chromatography and high-performance anion-exchange chromatography system with pulsed amperometric detection to analyse organic macromolecules in the shells.Results: Thermal analysis showed a low concentration of organic macromolecules in C. disrupta (1.38 wt%) and in C. kingii (1.71 wt%). A combination of biochemical protocols, including Calcofluor White staining and FTIR spectroscopic assessment, indicate that amino-polysaccharide chitin together with proteins, are present in the organic scaffolding of the shells. Scanning electron microscope of insoluble acid biopolymer extracts as well as FTIR technique show that the hierarchical structural organizations of organic biopolymers consist collagen-related matrix. Our histochemical fixing and staining techniques reveal many discrete proteins and glycoproteins from soluble organic macromolecules on the gel-SDS. We show here 'singlet' and 'doublet' glycosaminoglycan bands that are far above 260 kDa.General significance/conclusions: The presence of collagen matrix in Callista shells shows promise for the new source of biomaterials. Most importantly, the structural organization of the proteinaceous motif is predominantly helical structures and not silk-fibroin unlike in nacreous bivalve shells.
  •  
4.
  • Taheri, Shima, et al. (author)
  • Corrosion Inhibitory Effects of Mullite in Concrete Exposed to Sulfuric Acid Attack
  • 2020
  • In: CORROSION AND MATERIALS DEGRADATION. - : MDPI. - 2624-5558. ; 1:2, s. 282-295
  • Journal article (peer-reviewed)abstract
    • Prolonged exposure to low pH conditions affects the durability of concrete. In this work, the effect of mullite, aluminum silicate, on the strength and the acid corrosion of mortar and concrete under induced accelerated conditions in sulfuric acid solutions at pH of 0.25 and 1 was studied. The characterization of physicochemical changes was performed using techniques including compressive strength, scanning electron microscopy, micro-X-ray fluorescence spectrometry, and the Vickers hardness test. The results indicate that the addition of mullite does not have any significant effect on the overall strength of mortar and concrete samples, while it significantly increases their resistance to corrosion caused by sulfate attack by 90%, therefore, it is expected to increase the life span and decrease the maintenance costs of concrete pipes subjected to acid corrosion in sewer environments. The inhibition efficiency is observed to be sensitive to acid concentration and was improved with increase in the amount of mullite in samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view