SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ahmad M. Ashfaq) "

Search: WFRF:(Ahmad M. Ashfaq)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abbas, Ghazanfar, et al. (author)
  • Electrochemical investigation of mixed metal oxide nanocomposite electrode for low temperature solid oxide fuel cell
  • 2017
  • In: International Journal of Modern Physics B. - : WORLD SCIENTIFIC PUBL CO PTE LTD. - 0217-9792. ; 31:27
  • Journal article (peer-reviewed)abstract
    • Zinc-based nanostructured nickel (Ni) free metal oxide electrode material Zn-0.60/CU0.20Mn0.20 oxide (CMZO) was synthesized by solid state reaction and investigated for low temperature solid oxide fuel cell (LTSOFC) applications. The crystal structure and surface morphology of the synthesized electrode material were examined by XRD and SEM techniques respectively. The particle size of ZnO phase estimated by Scherer's equation was 31.50 nm. The maximum electrical conductivity was found to be 12.567 S/cm and 5.846 S/cm in hydrogen and air atmosphere, respectively at 600 degrees C. The activation energy of the CMZO material was also calculated from the DC conductivity data using Arrhenius plots and it was found to be 0.060 and 0.075 eV in hydrogen and air atmosphere, respectively. The CMZO electrode-based fuel cell was tested using carbonated samarium doped ceria composite (NSDC) electrolyte. The three layers 13 mm in diameter and 1 mm thickness of the symmetric fuel cell were fabricated by dry pressing. The maximum power density of 728.86 mW/cm(2) was measured at 550 degrees C.
  •  
2.
  • Ali, Amjad, et al. (author)
  • A potential electrolyte (Ce1-x CaxO2-delta) for fuel cells:Theoretical andexperimental study
  • 2018
  • In: Ceramics International. - : ELSEVIER SCI LTD. - 0272-8842 .- 1873-3956. ; 44:11, s. 12676-12683
  • Journal article (peer-reviewed)abstract
    • First-principles calculations are performed using density function theory to explore the effects of dopant Ca in ceria (Ce1-x CaxO2-delta). The impact of oxygen vacancy on band gap and density of states is examined in doped ceria using generalized gradient approximations. Vacancy association and vacancy formation energies of the doped ceria are calculated to reveal the effect of dopant on ion conduction. The experimental study of the sample Ce0.875Ca0.125O2-delta) was performed to compare with the theoretical results. The obtained results from theoretical calculation and experimental techniques show that oxygen vacancy increases the volume, lattice constant (5.47315 angstrom) but decrease the band gap (1.72 eV) and bulk modulus. The dopant radius (1.173 angstrom) and lattice constant (5.4718 angstrom) are also calculated by equations which is close to the DFT lattice parameter. The result shows that oxygen vacancy shifts the density of states to lower energy region. Band gap is decreased due to shifting of valence states to conduction band. Vacancy formation shows a significance increase in density of states near the Fermi level. Density of states at Fermi level is proportional to the conductivity, so an increase in density of states near the Fermi level increases the conductivity. The experimental measured ionic conductivity is found to 0.095 S cm(-1) at 600 degrees C. The microstructural studies is also reported in this work.
  •  
3.
  • Tariq, S., et al. (author)
  • Comparative study of Ce0.80Sm0.20 Ba0.80Y0.20O3-δ (YB-SDC) electrolyte by various chemical synthesis routes
  • 2018
  • In: Results in Physics. - : Elsevier B.V.. - 2211-3797. ; 8, s. 780-784
  • Journal article (peer-reviewed)abstract
    • Solid Oxide Fuel Cells is received a significant attention in recent years due to higher efficiency and fuel flexibility. The one of the main challenge for SOFC is to lower the operating temperature of SOFCs. Therefore, different strategies are used in order to enhance the ionic conduction of electrolyte, which can lower the overall SOFC operating temperature. The present work is focused on this strategy to enhance the electrolytic conductivity. Therefore, the ceria based composite electrolytes Ce0.80Sm0.20B0.80Y0.20O3-δ (YBSDC) are synthesized using three different approaches i.e. co-precipitation (YBSDC-1), sol-gel (YBSDC-2) and ball milling (YBSDC-3). Their crystal structures and surface morphologies are characterized through X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. The four-probe technique is employed to measure their dc conductivities in the temperature range (300–700) °C under air atmosphere. The open circuit voltage (OCV) and current are recorded with natural gas as fuel {flow rate kept at 100 ml min−1 at 1 atm pressure} over the temperature range (300–600) °C. The electrolyte (YBSDC-1) prepared by co-precipitation technique is shown better results as compare to other two electrolytes (YBSDC-2 and YBSDC-3). The electrolyte (YBSDC-1) having maximum dc conductivity (0.096 S/cm), peak power density 224 mW cm−2 and OCV 0.94 V at 600 °C. These results show that YBSDC-1electrolyte is potential candidate for low temperature SOFCs.
  •  
4.
  • Ahmad, Shafqat, et al. (author)
  • Gene × physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • In: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 9:7, s. 1003607-1003607
  • Journal article (peer-reviewed)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction = 0.014 vs. n = 71,611, Pinteraction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction = 0.003) and the SEC16B rs10913469 (Pinteraction = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
  •  
5.
  • Ahmad, Shafqat, et al. (author)
  • Gene x physical activity interactions in obesity : combined analysis of 111,421 individuals of European ancestry
  • 2013
  • In: PLOS Genetics. - : Public Library of Science. - 1553-7390 .- 1553-7404. ; 9:7, s. e1003607-
  • Journal article (peer-reviewed)abstract
    • Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS x physical activity interaction effect estimate (P-interaction = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, P-interaction = 0.014 vs. n = 71,611, P-interaction = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (P-interaction = 0.003) and the SEC16B rs10913469 (P-interaction = 0.025) variants showed evidence of SNP x physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.
  •  
6.
  • Hussain, Fida, et al. (author)
  • A modeling approach for low-temperature SOFC-based micro-combined heat and power systems
  • 2019
  • In: International Journal of Modern Physics B. - : WORLD SCIENTIFIC PUBL CO PTE LTD. - 0217-9792. ; 33:4
  • Journal article (peer-reviewed)abstract
    • The world's challenge is to determine a more efficient, economical and environmental-friendly energy source to compete and replace the ongoing conventional energy resources. Solid oxide fuel cells (SOFCs) provide a highly efficient system to use divergent energy resources and have proved to provide the cleanest energy, least energy use, and lowest emissions. A techno-economic study is required to investigate the model design for SOFC-based micro-combined heat and power (m-CHP) systems for applications in terms of educational and commercial buildings. This work models and explores the optimized application of hydrogen gas-fueled SOFC-based m-CHP systems in educational buildings. Two educational departments' loads are presented and model of SOFC-based m-CHP system against the different electric power demands is performed, in order to provide a techno-economic assessment of the technology. For successful development of the technology, results are related to system rightsizing, operating strategies, thermal to electric ratios, and match between end-use, with an aim towards classifying the overall feasibility and essential application requirements.
  •  
7.
  • Wilkinson, John L., et al. (author)
  • Pharmaceutical pollution of the world's rivers
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:8
  • Journal article (peer-reviewed)abstract
    • Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
  •  
8.
  • Abbas, Ghazanfar, et al. (author)
  • Electrochemical study of nanostructured electrode for low-temperature solid oxide fuel cell (LTSOFC)
  • 2014
  • In: International Journal of Energy Research. - : Hindawi Limited. - 0363-907X .- 1099-114X. ; 38:4, s. 518-523
  • Journal article (peer-reviewed)abstract
    • Zn-based nanostructured Ba0.05Cu0.25Fe0.10Zn0.60O (BCFZ) oxide electrode material was synthesized by solid-state reaction for low-temperature solid oxide fuel cell. The cell was fabricated by sandwiching NK-CDC electrolyte between BCFZ electrodes by dry press technique, and its performance was assessed. The maximum power density of 741.87 mW-cm(-2) was achieved at 550 degrees C. The crystal structure and morphology were characterized by X-ray diffractometer (XRD) and SEM. The particle size was calculated to be 25 nm applying Scherer's formula from XRD data. Electronic conductivities were measured with the four-probe DC method under hydrogen and air atmosphere. AC Electrochemical Impedance Spectroscopy of the BCFZ oxide electrode was also measured in hydrogen atmosphere at 450 degrees C.
  •  
9.
  • Afroz, Laila, et al. (author)
  • Nanocomposite Catalyst (1 – x)NiO-xCuO/yGDC for Biogas Fueled Solid Oxide Fuel Cells
  • 2023
  • In: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 6:21, s. 10918-10928
  • Journal article (peer-reviewed)abstract
    • The composites of Ni–Cu oxides with gadolinium doped ceria (GDC) are emerging as highly proficient anode catalysts, owing to their remarkable performance for solid oxide fuel cells operated with biogas. In this context, the nanocomposite catalysts (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3) are synthesized using a solid-state reaction route. The cubic and monoclinic structures are observed for NiO and CuO phases, respectively, while CeO2 showed cubic fluorite structure. The scanning electron microscopic images revealed a rise in the particle size with an increase in the copper and GDC concentration. The optical band gap values are calculated in the range 2.82–2.33 eV from UV–visible analysis. The Raman spectra confirmed the presence of vibration modes of CeO2 and NiO. The electrical conductivity of the nanocomposite anodes is increased as the concentration of copper and GDC increased and reached at 9.48 S cm–1 for 0.2NiO-0.8CuO/1.3GDC composition at 650 °C. The electrochemical performance of (1 – x)NiO-xCuO/yGDC (x = 0.2–0.8; y = 1,1.3)-based fuel cells is investigated with biogas fuel at 650 °C. Among all of the as-synthesized anodes, the fuel cell with composition 0.2NiO-0.8CuO/1.3GDC showed the best performance, such as an open circuit voltage of 0.84 V and peak power density of 72 mW cm–2. However, from these findings, it can be inferred that among all other compositions, the 0.2NiO-0.8CuO/1.3GDC anode is a superior combination for the high electrochemical performance of solid oxide fuel cells fueled with biogas.
  •  
10.
  • Hussain, Fida, et al. (author)
  • Comparative electrochemical investigation of zinc based nano-composite anode materials for solid oxide fuel cell
  • 2019
  • In: Ceramics International. - : Elsevier. - 0272-8842 .- 1873-3956. ; 45:1, s. 1077-1083
  • Journal article (peer-reviewed)abstract
    • The structural and electrochemical properties of zinc based nano-composites anode materials with a composition of X0.25Ti0.5Zn0.70 (where X = Cu, Mn, Ag) have been investigated in this present study. The proposed Xo.zsTiousZno.70 oxide materials have been synthesized through sol-gel method. The doping effect of Cu, Mn, and Ag on TiZn oxides were analyzed in terms of electronic conduction and power density in hydrogen atmosphere at comparatively low temperature in the range of 650 degrees C. The crystal structure and surface morphology were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis techniques. The XRD patterns of composites depict that the average crystalline sizes lie in the range of 20-100 nm. Four -probe DC conductivity technique was used to measure the conductivity of the materials and maximum electrical conductivity of Ag0.25Ti0.05Zn0.70 oxide was found to be 7.81 S/cm at 650 degrees C. The band gap and absorption spectra were determined by ultra-violet visible (UV-Vis) and Fourier Transform Infrared spectroscopy (FTIR) techniques respectively. The maximum power density was achieved to be 354 mW/cm(2) at 650 degrees C by Ag0.25Ti0.05Zn0.70 oxide anode with SDC (electrolyte) and BSCF (conventional cathode) materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14
Type of publication
journal article (14)
Type of content
peer-reviewed (14)
Author/Editor
Raza, Rizwan (11)
Abbas, Ghazanfar (7)
Ahmad, M. Ashfaq (7)
Khan, M. Ajmal (3)
Zhu, Bin (3)
Hussain, M. Jafar (2)
show more...
Ahmad, Imran (2)
Rukh, Gull (2)
Ericson, Ulrika (2)
Shungin, Dmitry (2)
Wareham, Nicholas J. (2)
Hallmans, Göran (2)
Tamimi, Rulla M. (2)
Stancáková, Alena (2)
Laakso, Markku (2)
Linneberg, Allan (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Orho-Melander, Marju (2)
Hansen, Torben (2)
Hussain, Fida (2)
Ahmad, Muhammad Ashf ... (2)
Ahmad, Shafqat (2)
Renström, Frida (2)
Ridker, Paul M. (2)
Hu, Frank B. (2)
Chasman, Daniel I. (2)
Ganna, Andrea (2)
Ali, Ashfaq (2)
Kurbasic, Azra (2)
Chu, Audrey Y (2)
Rose, Lynda M (2)
Qi, Qibin (2)
Sandholt, Camilla H (2)
Elks, Cathy E (2)
Curhan, Gary (2)
Jensen, Majken K (2)
Allin, Kristine H (2)
Brage, Soren (2)
Langenberg, Claudia (2)
Aadahl, Mette (2)
Paré, Guillaume (2)
Pedersen, Nancy L (2)
Boehnke, Michael (2)
Hamsten, Anders (2)
Mohlke, Karen L (2)
Pasquale, Louis T (2)
Scott, Robert A (2)
Ingelsson, Erik (2)
Qi, Lu (2)
show less...
University
Royal Institute of Technology (8)
Karolinska Institutet (2)
Umeå University (1)
Uppsala University (1)
Stockholm University (1)
Linköping University (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
University of Borås (1)
show less...
Language
English (14)
Research subject (UKÄ/SCB)
Engineering and Technology (9)
Natural sciences (4)
Medical and Health Sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view