SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aitman T) "

Search: WFRF:(Aitman T)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Abdelmagid, N., et al. (author)
  • Von Willebrand Factor Gene Variants Associate with Herpes simplex Encephalitis
  • 2016
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Journal article (peer-reviewed)abstract
    • Herpes simplex encephalitis (HSE) is a rare complication of Herpes simplex virus type-1 infection. It results in severe parenchymal damage in the brain. Although viral latency in neurons is very common in the population, it remains unclear why certain individuals develop HSE. Here we explore potential host genetic variants predisposing to HSE. In order to investigate this we used a rat HSE model comparing the HSE susceptible SHR (Spontaneously Hypertensive Rats) with the asymptomatic infection of BN (Brown Norway). Notably, both strains have HSV-1 spread to the CNS at four days after infection. A genome wide linkage analysis of 29 infected HXB/BXH RILs (recombinant inbred lines-generated from the prior two strains), displayed variable susceptibility to HSE enabling the definition of a significant QTL (quantitative trait locus) named Hse6 towards the end of chromosome 4 (160.89-174Mb) containing the Vwf (von Willebrand factor) gene. This was the only gene in the QTL with both cis-regulation in the brain and included several non-synonymous SNPs (single nucleotide polymorphism). Intriguingly, in human chromosome 12 several SNPs within the intronic region between exon 43 and 44 of the VWF gene were associated with human HSE pathogenesis. In particular, rs917859 is nominally associated with an odds ratio of 1.5 (95% CI 1.11-2.02; p-value = 0.008) after genotyping in 115 HSE cases and 428 controls. Although there are possibly several genetic and environmental factors involved in development of HSE, our study identifies variants of the VWF gene as candidates for susceptibility in experimental and human HSE.
  •  
4.
  •  
5.
  •  
6.
  • Walley, A J, et al. (author)
  • Differential coexpression analysis of obesity-associated networks in human subcutaneous adipose tissue.
  • 2012
  • In: International Journal of Obesity. - : Springer Science and Business Media LLC. - 1476-5497 .- 0307-0565. ; 36:1, s. 137-147
  • Journal article (peer-reviewed)abstract
    • Objective:To use a unique obesity-discordant sib-pair study design to combine differential expression analysis, expression quantitative trait loci (eQTLs) mapping and a coexpression regulatory network approach in subcutaneous human adipose tissue to identify genes relevant to the obese state.Study design:Genome-wide transcript expression in subcutaneous human adipose tissue was measured using Affymetrix U133 Plus 2.0 microarrays (Affymetrix, Santa Clara, CA, USA), and genome-wide genotyping data was obtained using an Applied Biosystems (Applied Biosystems; Life Technologies, Carlsbad, CA, USA) SNPlex linkage panel.Subjects:A total of 154 Swedish families ascertained through an obese proband (body mass index (BMI) >30kgm(-2)) with a discordant sibling (BMI>10kgm(-2) less than proband).Results:Approximately one-third of the transcripts were differentially expressed between lean and obese siblings. The cellular adhesion molecules (CAMs) KEGG grouping contained the largest number of differentially expressed genes under cis-acting genetic control. By using a novel approach to contrast CAMs coexpression networks between lean and obese siblings, a subset of differentially regulated genes was identified, with the previously GWAS obesity-associated neuronal growth regulator 1 (NEGR1) as a central hub. Independent analysis using mouse data demonstrated that this finding of NEGR1 is conserved across species.Conclusion:Our data suggest that in addition to its reported role in the brain, NEGR1 is also expressed in subcutaneous adipose tissue and acts as a central 'hub' in an obesity-related transcript network.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view