SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Al Shaer M. H.) "

Search: WFRF:(Al Shaer M. H.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lange, C., et al. (author)
  • Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis
  • 2018
  • In: Journal of Internal Medicine. - : WILEY. - 0954-6820 .- 1365-2796. ; 284:2, s. 163-188
  • Research review (peer-reviewed)abstract
    • According to the World Health Organization (WHO), tuberculosis is the leading cause of death attributed to a single microbial pathogen worldwide. In addition to the large number of patients affected by tuberculosis, the emergence of Mycobacterium tuberculosis drug-resistance is complicating tuberculosis control in many high-burden countries. During the past 5years, the global number of patients identified with multidrug-resistant tuberculosis (MDR-TB), defined as bacillary resistance at least against rifampicin and isoniazid, the two most active drugs in a treatment regimen, has increased by more than 20% annually. Today we experience a historical peak in the number of patients affected by MDR-TB. The management of MDR-TB is characterized by delayed diagnosis, uncertainty of the extent of bacillary drug-resistance, imprecise standardized drug regimens and dosages, very long duration of therapy and high frequency of adverse events which all translate into a poor prognosis for many of the affected patients. Major scientific and technological advances in recent years provide new perspectives through treatment regimens tailor-made to individual needs. Where available, such personalized treatment has major implications on the treatment outcomes of patients with MDR-TB. The challenge now is to bring these adances to those patients that need them most.
  •  
2.
  • Willander, Magnus, et al. (author)
  • Zinc oxide nanorod based photonic devices : recent progress in growth, light emitting diodes and lasers
  • 2009
  • In: NANOTECHNOLOGY. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 20:33, s. 332001-
  • Research review (peer-reviewed)abstract
    • Zinc oxide (ZnO), with its excellent luminescent properties and the ease of growth of its nanostructures, holds promise for the development of photonic devices. The recent advances in growth of ZnO nanorods are discussed. Results from both low temperature and high temperature growth approaches are presented. The techniques which are presented include metal-organic chemical vapour deposition (MOCVD), vapour phase epitaxy (VPE), pulse laser deposition (PLD), vapour-liquid-solid (VLS), aqueous chemical growth (ACG) and finally the electrodeposition technique as an example of a selective growth approach. Results from structural as well as optical properties of a variety of ZnO nanorods are shown and analysed using different techniques, including high resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), photoluminescence (PL) and cathodoluminescence (CL), for both room temperature and for low temperature performance. These results indicate that the grown ZnO nanorods possess reproducible and interesting optical properties. Results on obtaining p-type doping in ZnO micro- and nanorods are also demonstrated using PLD. Three independent indications were found for p-type conducting, phosphorus-doped ZnO nanorods: first, acceptor-related CL peaks, second, opposite transfer characteristics of back-gate field effect transistors using undoped and phosphorus doped wire channels, and finally, rectifying I-V characteristics of ZnO: P nanowire/ZnO:Ga p-n junctions. Then light emitting diodes (LEDs) based on n-ZnO nanorods combined with different technologies (hybrid technologies) are suggested and the recent electrical, as well as electro-optical, characteristics of these LEDs are shown and discussed. The hybrid LEDs reviewed and discussed here are mainly presented for two groups: those based on n-ZnO nanorods and p-type crystalline substrates, and those based on n-ZnO nanorods and p-type amorphous substrates. Promising electroluminescence characteristics aimed at the development of white LEDs are demonstrated. Although some of the presented LEDs show visible emission for applied biases in excess of 10 V, optimized structures are expected to provide the same emission at much lower voltage. Finally, lasing from ZnO nanorods is briefly reviewed. An example of a recent whispering gallery mode (WGM) lasing from ZnO is demonstrated as a way to enhance the stimulated emission from small size structures.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view