SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Alffenaar Jan Willem) "

Search: WFRF:(Alffenaar Jan Willem)

  • Result 1-10 of 16
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alffenaar, Jan-Willem C., et al. (author)
  • Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs : An evaluation of in vitro, in vivo methodologies and human studies
  • 2022
  • In: Frontiers in Pharmacology. - : Frontiers Media S.A.. - 1663-9812. ; 13
  • Research review (peer-reviewed)abstract
    • There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
  •  
2.
  • Capiau, Sara, et al. (author)
  • Official International Association for Therapeutic Drug Monitoring and Toxicology guideline : Development and Validation of Dried Blood Spot-based Methods for Therapeutic Drug Monitoring
  • 2019
  • In: Therapeutic Drug Monitoring. - 0163-4356 .- 1536-3694. ; 41:4, s. 409-430
  • Journal article (peer-reviewed)abstract
    • Dried blood spot (DBS) analysis has been introduced more and more into clinical practice to facilitate Therapeutic Drug Monitoring (TDM). To assure the quality of bioanalytical methods, the design, development and validation needs to fit the intended use. Current validation requirements, described in guidelines for traditional matrices (blood, plasma, serum), do not cover all necessary aspects of method development, analytical- and clinical validation of DBS assays for TDM. Therefore, this guideline provides parameters required for the validation of quantitative determination of small molecule drugs in DBS using chromatographic methods, and to provide advice on how these can be assessed. In addition, guidance is given on the application of validated methods in a routine context. First, considerations for the method development stage are described covering sample collection procedure, type of filter paper and punch size, sample volume, drying and storage, internal standard incorporation, type of blood used, sample preparation and prevalidation. Second, common parameters regarding analytical validation are described in context of DBS analysis with the addition of DBS-specific parameters, such as volume-, volcano-and hematocrit effects. Third, clinical validation studies are described, including number of clinical samples and patients, comparison of DBS with venous blood, statistical methods and interpretation, spot quality, sampling procedure, duplicates, outliers, automated analysis methods and quality control programs. Lastly, cross-validation is discussed, covering changes made to existing sampling- and analysis methods. This guideline of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology on the development, validation and evaluation of DBS-based methods for the purpose of TDM aims to contribute to high-quality micro sampling methods used in clinical practice.
  •  
3.
  • Chen, Ricky Hao, et al. (author)
  • Is there a need to optimise pyrazinamide doses in patients with tuberculosis? A systematic review
  • 2023
  • In: International Journal of Antimicrobial Agents. - : ELSEVIER. - 0924-8579 .- 1872-7913. ; 62:3
  • Research review (peer-reviewed)abstract
    • Pyrazinamide (PZA) is a first-line antituberculosis drug with potent sterilising activity. Variability in drug exposure may translate into suboptimal treatment responses. This systematic review, conducted according to PRISMA guidelines, aimed to evaluate the concentration-effect relationship. In vitro/in vivo studies had to contain information on the infection model, PZA dose and concentration, and microbiological outcome. Human studies had to present information on PZA dose, measures of drug exposure and maximum concentration, and microbiological response parameter or overall treatment outcome. A total of 34 studies were assessed, including in vitro (n = 2), in vivo (n = 3) and clinical studies (n = 29). Intracellular and extracellular models demonstrated a direct correlation between PZA dose of 15-50 mg/kg/day and reduction in bacterial count between 0.50-27.7 log(10) CFU/mL. Consistent with this, higher PZA doses (>150 mg/kg) were associated with a greater reduction in bacterial burden in BALB/c mice models. Human pharmacokinetic studies displayed a linear positive correlation between PZA dose (i.e. 21.4-35.7 mg/kg/day) and drug exposure (AUC range 220.6-514.5 mg center dot h/L). Additionally, human studies confirmed a dose-effect relationship, with an increased 2-month sputum culture conversion rate at AUC/MIC targets of 8.4-11.3 with higher exposure/susceptibility ratios leading to greater efficacy. A 5-fold variability in AUC was observed at PZA dose of 25 mg/kg. A direct concentration-effect relationship and increased treatment efficacy with higher PZA exposure to susceptibility ratios was observed. Taking into account variability in drug exposure and treatment response, further studies on dose optimisation are justified.
  •  
4.
  • Deshpande, Devyani, et al. (author)
  • D-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal
  • 2018
  • In: Clinical Infectious Diseases. - : OXFORD UNIV PRESS INC. - 1058-4838 .- 1537-6591. ; 67, s. S308-S316
  • Journal article (peer-reviewed)abstract
    • Background. D-cycloserine is used to treat multidrug-resistant tuberculosis. Its efficacy, contribution in combination therapy, and best clinical dose are unclear, also data on the D-cycloserine minimum inhibitory concentration (MIC) distributions is scant. Methods. We performed a systematic search to identify pharmacokinetic and pharmacodynamic studies performed with D-cycloserine. We then performed a combined exposure-effect and dose fractionation study of D-cycloserine in the hollow fiber system model of tuberculosis (HFS-TB). In parallel, we identified D-cycloserine MICs in 415 clinical Mycobacterium tuberculosis (Mtb) isolates from patients. We utilized these results, including intracavitary concentrations, to identify the clinical dose that would be able to achieve or exceed target exposures in 10 000 patients using Monte Carlo experiments (MCEs). Results. There were no published D-cycloserine pharmacokinetics/pharmacodynamics studies identified. Therefore, we performed new HFS-TB experiments. Cyloserine killed 6.3 log(10) colony-forming units (CFU)/mL extracellular bacilli over 28 days. Efficacy was driven by the percentage of time concentration persisted above MIC (% T-MIC), with 1.0 log(10) CFU/mL kill achieved by % T-MIC = 30% (target exposure). The tentative epidemiological cutoff value with the Sensititre MYCOTB assay was 64 mg/L. In MCEs, 750 mg twice daily achieved target exposure in lung cavities of 92% of patients whereas 500 mg twice daily achieved target exposure in 85% of patients with meningitis. The proposed MCE-derived clinical susceptibility breakpoint at the proposed doses was 64 mg/L. Conclusions. Cycloserine is cidal against Mtb. The susceptibility breakpoint is 64 mg/L. However, the doses likely to achieve the cidality in patients are high, and could be neurotoxic.
  •  
5.
  • Ekqvist, David, et al. (author)
  • Safety and pharmacokinetics-pharmacodynamics of a shorter tuberculosis treatment with high-dose pyrazinamide and rifampicin : a study protocol of a phase II clinical trial (HighShort-RP)
  • 2022
  • In: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Introduction: Increased dosing of rifampicin and pyrazinamide seems a viable strategy to shorten treatment and prevent relapse of drug-susceptible tuberculosis (TB), but safety and efficacy remains to be confirmed. This clinical trial aims to explore safety and pharmacokinetics-pharmacodynamics of a high-dose pyrazinamide-rifampicin regimen.Methods and analysis: Adult patients with pulmonary TB admitted to six hospitals in Sweden and subjected to receive first-line treatment are included. Patients are randomised (1:3) to either 6-month standardised TB treatment or a 4-month regimen based on high-dose pyrazinamide (40 mg/kg) and rifampicin (35 mg/kg) along with standard doses of isoniazid and ethambutol. Plasma samples for measurement of drug exposure determined by liquid chromatography tandem-mass spectrometry are obtained at 0, 1, 2, 4, 6, 8, 12 and 24 hours, at day 1 and 14. Maximal drug concentration (C-max) and area under the concentration-time curve (AUC(0-24h)) are estimated by non-compartmental analysis. Conditions for early model-informed precision dosing of high-dose pyrazinamide-rifampicin are pharmacometrically explored. Adverse drug effects are monitored throughout the study and graded according to Common Terminology Criteria for Adverse Events V.5.0. Early bactericidal activity is assessed by time to positivity in BACTEC MGIT 960 of induced sputum collected at day 0, 5, 8, 15 and week 8. Minimum inhibitory concentrations of first-line drugs are determined using broth microdilution. Disease severity is assessed with X-ray grading and a validated clinical scoring tool (TBscore II). Clinical outcome is registered according to WHO definitions (2020) in addition to occurrence of relapse after end of treatment. Primary endpoint is pyrazinamide AUC(0-24h) and main secondary endpoint is safety.Ethics and dissemination: The study is approved by the Swedish Ethical Review Authority and the Swedish Medical Products Agency. Informed written consent is collected before study enrolment. The study results will be submitted to a peer-reviewed journal.
  •  
6.
  • Forsman, Lina Davies, et al. (author)
  • Plasma concentrations of second-line antituberculosis drugs in relation to minimum inhibitory concentrations in multidrug-resistant tuberculosis patients in China : a study protocol of a prospective observational cohort study
  • 2018
  • In: BMJ Open. - : BMJ. - 2044-6055. ; 8:9
  • Journal article (peer-reviewed)abstract
    • Individualised treatment through therapeutic drug monitoring (TDM) may improve tuberculosis (TB) treatment outcomes but is not routinely implemented. Prospective clinical studies of drug exposure and minimum inhibitory concentrations (MICs) in multidrug-resistant TB (MDR-TB) are scarce. This translational study aims to characterise the area under the concentration-time curve of individual MDR-TB drugs, divided by the MIC for Mycobacterium tuberculosis isolates, to explore associations with markers of treatment progress and to develop useful strategies for clinical implementation of TDM in MDR-TB.Methods and analysis: Adult patients with pulmonary MDR-TB treated in Xiamen, China, are included. Plasma samples for measure of drug exposure are obtained at 0, 1, 2, 4, 6, 8 and 10 hours after drug intake at week 2 and at 0, 4 and 6 hours during weeks 4 and 8. Sputum samples for evaluating time to culture positivity and MIC determination are collected at days 0, 2 and 7 and at weeks 2, 4, 8 and 12 after treatment initiation. Disease severity are assessed with a clinical scoring tool (TBscore II) and quality of life evaluated using EQ-5D-5L. Drug concentrations of pyrazinamide, ethambutol, levofloxacin, moxifloxacin, cycloserine, prothionamide and para-aminosalicylate are measured by liquid chromatography tandem-mass spectrometry and the levels of amikacin measured by immunoassay. Dried blood spot on filter paper, to facilitate blood sampling for analysis of drug concentrations, is also evaluated. The MICs of the drugs listed above are determined using custom-made broth microdilution plates and MYCOTB plates with Middlebrook 7H9 media. MIC determination of pyrazinamide is performed in BACTEC MGIT 960.Ethics and dissemination: This study has been approved by the ethical review boards of Karolinska Institutet, Sweden and Fudan University, China. Informed written consent is given by participants. The study results will be submitted to a peer-reviewed journal. Trial registration number NCT02816931; Pre-results.
  •  
7.
  • Gafar, Fajri, et al. (author)
  • Global estimates and determinants of antituberculosis drug pharmacokinetics in children and adolescents : a systematic review and individual patient data meta-analysis
  • 2023
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 61:3
  • Research review (peer-reviewed)abstract
    • Background Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level.Methods We systematically searched MEDLINE, Embase and Web of Science (1990–2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration–time curve from 0 to 24 h post-dose (AUC0–24) and peak plasma concentration (Cmax) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0–24 and Cmax were assessed with linear mixed-effects models.Results Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0–24 were summarised for isoniazid (18.7 (95% CI 15.5–22.6) h·mg·L−1), rifampicin (34.4 (95% CI 29.4–40.3) h·mg·L−1), pyrazinamide (375.0 (95% CI 339.9–413.7) h·mg·L−1) and ethambutol (8.0 (95% CI 6.4–10.0) h·mg·L−1). Our multivariate models indicated that younger age (especially <2 years) and HIV-positive status were associated with lower AUC0–24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0–24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0–24 and slow acetylators had higher isoniazid AUC0–24 than intermediate acetylators. Determinants of Cmax were generally similar to those for AUC0–24.Conclusions This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
  •  
8.
  • Shao, Ge, et al. (author)
  • Population pharmacokinetics and model-based dosing evaluation of bedaquiline in multidrug-resistant tuberculosis patients
  • 2023
  • In: Frontiers in Pharmacology. - : FRONTIERS MEDIA SA. - 1663-9812. ; 14
  • Journal article (peer-reviewed)abstract
    • Aims: Bedaquiline is now recommended to all patients in the treatment of multidrug-resistant tuberculosis (MDR-TB) using standard dosing regimens. As the ability to measure blood drug concentrations is very limited, little is known about drug exposure and treatment outcome. Thus, this study aimed to model the population pharmacokinetics as well as to evaluate the currently recommended dosage.Methodology: A bedaquiline population pharmacokinetic (PK) model was developed based on samples collected from the development cohort before and 1, 2, 3, 4, 5, 6, 8, 12, 18, and 24 h after drug intake on week 2 and week 4 of treatment. In a prospective validation cohort of patients with MDR-TB, treated with bedaquiline-containing standardized regimen, drug exposure was assessed using the developed population PK model and thresholds were identified by relating to 2-month and 6-month sputum culture conversion and final treatment outcome using classification and regression tree analysis. In an exploratory analysis by the probability of target attainment (PTA) analysis, we evaluated the recommended dosage at different MIC levels by Middlebrook 7H11 agar dilution (7H11).Results: Bedaquiline pharmacokinetic data from 55 patients with MDR-TB were best described by a three-compartment model with dual zero-order input. Body weight was a covariate of the clearance and the central volume of distribution, albumin was a covariate of the clearance. In the validation cohort, we enrolled 159 patients with MDR-TB. The 7H11 MIC mode (range) of bedaquiline was 0.06 mg (0.008-0.25 mg/L). The study participants with AUC(0-24h)/MIC above 175.5 had a higher probability of culture conversion after 2-month treatment (adjusted relative risk, aRR:16.4; 95%CI: 5.3-50.4). Similarly, those with AUC(0-24h)/MIC above 118.2 had a higher probability of culture conversion after 6-month treatment (aRR:20.1; 95%CI: 2.9-139.4), and those with AUC(0-24h)/MIC above 74.6 had a higher probability of successful treatment outcome (aRR:9.7; 95%CI: 1.5-64.8). Based on the identified thresholds, simulations showed that the WHO recommended dosage (400 mg once daily for 14 days followed by 200 mg thrice weekly) resulted in PTA >90% for the majority of isolates (94%; MICs =0.125 mg/L).Conclusion: We established a population PK model for bedaquiline in patients with MDR-TB in China. Based on the thresholds and MIC distribution derived in a clinical study, the recommended dosage of bedaquiline is sufficient for the treatment of MDR-TB.
  •  
9.
  • Sturkenboom, Marieke G. G., et al. (author)
  • Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs
  • 2021
  • In: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:6, s. 685-710
  • Research review (peer-reviewed)abstract
    • Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
  •  
10.
  • van Beek, Stijn W., et al. (author)
  • A Model-Informed Method for the Purpose of Precision Dosing of Isoniazid in Pulmonary Tuberculosis
  • 2021
  • In: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 60:7, s. 943-953
  • Journal article (peer-reviewed)abstract
    • Background and ObjectiveThis study aimed to develop and evaluate a population pharmacokinetic model and limited sampling strategy for isoniazid to be used in model-based therapeutic drug monitoring.MethodsA population pharmacokinetic model was developed based on isoniazid and acetyl-isoniazid pharmacokinetic data from seven studies with in total 466 patients from three continents. Three limited sampling strategies were tested based on the available sampling times in the dataset and practical considerations. The tested limited sampling strategies sampled at 2, 4, and 6 h, 2 and 4 h, and 2 h after dosing. The model-predicted area under the concentration–time curve from 0 to 24 h (AUC24) and the peak concentration from the limited sampling strategies were compared to predictions using the full pharmacokinetic curve. Bias and precision were assessed using the mean error (ME) and the root mean square error (RMSE), both expressed as a percentage of the mean model-predicted AUC24 or peak concentration on the full pharmacokinetic curve.ResultsPerformance of the developed model was acceptable and the uncertainty in parameter estimations was generally low (the highest relative standard error was 39% coefficient of variation). The limited sampling strategy with sampling at 2 and 4 h was determined as most suitable with an ME of 1.1% and RMSE of 23.4% for AUC24 prediction, and ME of 2.7% and RMSE of 23.8% for peak concentration prediction. For the performance of this strategy, it is important that data on both isoniazid and acetyl-isoniazid are used. If only data on isoniazid are available, a limited sampling strategy using 2, 4, and 6 h can be employed with an ME of 1.7% and RMSE of 20.9% for AUC24 prediction, and ME of 1.2% and RMSE of 23.8% for peak concentration prediction.ConclusionsA model-based therapeutic drug monitoring strategy for personalized dosing of isoniazid using sampling at 2 and 4 h after dosing was successfully developed. Prospective evaluation of this strategy will show how it performs in a clinical therapeutic drug monitoring setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view