SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ambjörnsson Tobias 1974) "

Search: WFRF:(Ambjörnsson Tobias 1974)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alizadehheidari, Mohammadreza, 1987, et al. (author)
  • Unfolding of nanoconfined circular DNA
  • 2015
  • In: BIOPHYSICAL JOURNAL. - : Elsevier BV. - 0006-3495 .- 1542-0086. ; 108:2 Supplement 1
  • Journal article (other academic/artistic)
  •  
2.
  •  
3.
  • Dvirnas, Albertas, et al. (author)
  • Detection of structural variations in densely-labelled optical DNA barcodes: A hidden Markov model approach
  • 2021
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:11
  • Journal article (peer-reviewed)abstract
    • Large-scale genomic alterations play an important role in disease, gene expression, and chromosome evolution. Optical DNA mapping (ODM), commonly categorized into sparsely-labelled ODM and densely-labelled ODM, provides sequence-specific continuous intensity profiles (DNA barcodes) along single DNA molecules and is a technique well-suited for detecting such alterations. For sparsely-labelled barcodes, the possibility to detect large genomic alterations has been investigated extensively, while densely-labelled barcodes have not received as much attention. In this work, we introduce HMMSV, a hidden Markov model (HMM) based algorithm for detecting structural variations (SVs) directly in densely-labelled barcodes without access to sequence information. We evaluate our approach using simulated data-sets with 5 different types of SVs, and combinations thereof, and demonstrate that the method reaches a true positive rate greater than 80% for randomly generated barcodes with single variations of size 25 kilobases (kb). Increasing the length of the SV further leads to larger true positive rates. For a real data-set with experimental barcodes on bacterial plasmids, we successfully detect matching barcode pairs and SVs without any particular assumption of the types of SVs present. Instead, our method effectively goes through all possible combinations of SVs. Since ODM works on length scales typically not reachable with other techniques, our methodology is a promising tool for identifying arbitrary combinations of genomic alterations.
  •  
4.
  • Dvirnas, Albertas, et al. (author)
  • Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach
  • 2018
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 13:3
  • Journal article (peer-reviewed)abstract
    • The output from whole genome sequencing is a set of contigs, i.e. short non-overlapping DNA sequences (sizes 1-100 kilobasepairs). Piecing the contigs together is an especially difficult task for previously unsequenced DNA, and may not be feasible due to factors such as the lack of sufficient coverage or larger repetitive regions which generate gaps in the final sequence. Here we propose a new method for scaffolding such contigs. The proposed method uses densely labeled optical DNA barcodes from competitive binding experiments as scaffolds. On these scaffolds we position theoretical barcodes which are calculated from the contig sequences. This allows us to construct longer DNA sequences from the contig sequences. This proof-of-principle study extends previous studies which use sparsely labeled DNA barcodes for scaffolding purposes. Our method applies a probabilistic approach that allows us to discard "foreign" contigs from mixed samples with contigs from different types of DNA. We satisfy the contig non-overlap constraint by formulating the contig placement challenge as a combinatorial auction problem. Our exact algorithm for solving this problem reduces computational costs compared to previous methods in the combinatorial auction field. We demonstrate the usefulness of the proposed scaffolding method both for synthetic contigs and for contigs obtained using Illumina sequencing for a mixed sample with plasmid and chromosomal DNA.
  •  
5.
  • Goyal, Gaurav, 1983, et al. (author)
  • CRISPR/CAS9 BASED DNA-COMBING ASSAY FOR DETECTING ANTIMICROBIAL RESISTANCE GENES ON PLASMIDS
  • 2021
  • In: MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. ; , s. 801-802
  • Conference paper (peer-reviewed)abstract
    • We present a method based on CRISPR/Cas9 excision and DNA combing to detect anti-microbial resistance (AMR) genes on bacterial plasmids. The assay is inexpensive, simple, fast, and also provides information on the number and size of plasmids in a sample. We demonstrate detection of the gene encoding for the New Delhi metallobeta-lactamase 1 (blaNDM-1) enzyme, known to make bacteria resistant to a broad range of beta-lactam antibiotics.
  •  
6.
  • Johnning, Anna, 1985, et al. (author)
  • The resistomes of six carbapenem-resistant pathogens - a critical genotype-phenotype analysis
  • 2018
  • In: Microbial Genomics. - : Microbiology Society. - 2057-5858. ; 4:11
  • Journal article (peer-reviewed)abstract
    • Carbapenem resistance is a rapidly growing threat to our ability to treat refractory bacterial infections. To understand how carbapenem resistance is mobilized and spread between pathogens, it is important to study the genetic context of the underlying resistance mechanisms. In this study, the resistomes of six clinical carbapenem-resistant isolates of five different species - Acinetobacter baumannii, Escherichia colt, two Klebsiella pneumoniae, Proteus mirabilis and Pseudomonas aeruginosa - were characterized using whole genome sequencing. All Enterobacteriaceae isolates and the A. baumannii isolate had acquired a large number of antimicrobial resistance genes (7-18 different genes per isolate), including the following encoding carbapenemases: bla(KPC-2), bla(OXA-48), bla(OXA-72), bla(NDM-1), bla(NDm-7) and bla(VIM-1). In addition, a novel version of bla(SHv) was discovered. Four new resistance plasmids were identified and their fully assembled sequences were verified using optical DNA mapping. Most of the resistance genes were colocalized on these and other plasmids, suggesting a risk for coselection. In contrast, five out of six carbapenemase genes were present on plasmids with no or few other resistance genes. The expected level of resistance - based on acquired resistance determinants - was concordant with measured levels in most cases. There were, however, several important discrepancies for four of the six isolates concerning multiple classes of antibiotics. In conclusion, our results further elucidate the diversity of carbapenemases, their mechanisms of horizontal transfer and possible patterns of co-selection. The study also emphasizes the difficulty of using whole genome sequencing for antimicrobial susceptibility testing of pathogens with complex genotypes.
  •  
7.
  • Müller, Vilhelm, 1990, et al. (author)
  • Cultivation-Free Typing of Bacteria Using Optical DNA Mapping
  • 2020
  • In: Acs Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 6:5, s. 1076-1084
  • Journal article (peer-reviewed)abstract
    • A variety of pathogenic bacteria can infect humans, and rapid species identification is crucial for the correct treatment. However, the identification process can often be time-consuming and depend on the cultivation of the bacterial pathogen(s). Here, we present a stand-alone, enzyme-free, optical DNA mapping assay capable of species identification by matching the intensity profiles of large DNA molecules to a database of fully assembled bacterial genomes (>10 000). The assay includes a new data analysis strategy as well as a general DNA extraction protocol for both Gram-negative and Gram-positive bacteria. We demonstrate that the assay is capable of identifying bacteria directly from uncultured clinical urine samples, as well as in mixtures, with the potential to be discriminative even at the subspecies level. We foresee that the assay has applications both within research laboratories and in clinical settings, where the time-consuming step of cultivation can be minimized or even completely avoided.
  •  
8.
  • Nyberg, Markus, et al. (author)
  • Modeling protein target search in human chromosomes
  • 2021
  • In: Physical Review Research. - : American Physical Society. - 2643-1564. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Several processes in the cell, such as gene regulation, start when key proteins recognize and bind to short DNA sequences. However, as these sequences can be hundreds of million times shorter than the genome, they are hard to find by simple diffusion: diffusion-limited association rates may underestimate in vitro measurements up to several orders of magnitude. Moreover, the rates increase if the DNA is coiled rather than straight. Here we model how this works in vivo in mammalian cells. We use chromatin-chromatin contact data from Hi-C experiments to map the protein target-search onto a network problem. The nodes represent DNA segments and the weight of the links are proportional to measured contact probabilities. We then put forward a diffusion-reaction equation for the density of searching protein that allows us to calculate the association rates across the genome analytically. For segments where the rates are high, we find that they are enriched with active gene starts and have high RNA expression levels. This paper suggests that the DNA's 3D conformation is important for protein search times in vivo and offers a method to interpret protein-binding profiles in eukaryotes that cannot be explained by the DNA sequence itself.
  •  
9.
  • Torstensson, Erik, et al. (author)
  • Combining dense and sparse labeling in optical DNA mapping
  • 2021
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203 .- 1932-6203. ; 16:11 November
  • Journal article (peer-reviewed)abstract
    • Optical DNA mapping (ODM) is based on fluorescent labeling, stretching and imaging of single DNA molecules to obtain sequence-specific fluorescence profiles, DNA barcodes. These barcodes can be mapped to theoretical counterparts obtained from DNA reference sequences, which in turn allow for DNA identification in complex samples and for detecting structural changes in individual DNA molecules. There are several types of DNA labeling schemes for ODM and for each labeling type one or several types of match scoring methods are used. By combining the information from multiple labeling schemes one can potentially improve mapping confidence; however, combining match scores from different labeling assays has not been implemented yet. In this study, we introduce two theoretical methods for dealing with analysis of DNA molecules with multiple label types. In our first method, we convert the alignment scores, given as output from the different assays, into p-values using carefully crafted null models. We then combine the p-values for different label types using standard methods to obtain a combined match score and an associated combined p-value. In the second method, we use a block bootstrap approach to check for the uniqueness of a match to a database for all barcodes matching with a combined p-value below a predefined threshold. For obtaining experimental dual-labeled DNA barcodes, we introduce a novel assay where we cut plasmid DNA molecules from bacteria with restriction enzymes and the cut sites serve as sequence-specific markers, which together with barcodes obtained using the established competitive binding labeling method, form a dual-labeled barcode. All experimental data in this study originates from this assay, but we point out that our theoretical framework can be used to combine data from all kinds of available optical DNA mapping assays. We test our multiple labeling frameworks on barcodes from two different plasmids and synthetically generated barcodes (combined competitive-binding- and nick-labeling). It is demonstrated that by simultaneously using the information from all label types, we can substantially increase the significance when we match experimental barcodes to a database consisting of theoretical barcodes for all sequenced plasmids.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view