SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Anane A.) "

Search: WFRF:(Anane A.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Chumak, A. V., et al. (author)
  • Advances in Magnetics Roadmap on Spin-Wave Computing
  • 2022
  • In: IEEE Transactions on Magnetics. - 0018-9464. ; 58:6
  • Journal article (peer-reviewed)abstract
    • Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction. Author
  •  
2.
  •  
3.
  •  
4.
  • Dieny, B., et al. (author)
  • Opportunities and challenges for spintronics in the microelectronics industry
  • 2020
  • In: Nature Electronics. - : Springer Science and Business Media LLC. - 2520-1131. ; 3:8, s. 446-459
  • Journal article (peer-reviewed)abstract
    • This Review Article examines the potential of spintronics in four key areas of application -memories, sensors, microwave devices, and logic devices - and discusses the challenges that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms. Spintronic devices exploit the spin, as well as the charge, of electrons and could bring new capabilities to the microelectronics industry. However, in order for spintronic devices to meet the ever-increasing demands of the industry, innovation in terms of materials, processes and circuits are required. Here, we review recent developments in spintronics that could soon have an impact on the microelectronics and information technology industry. We highlight and explore four key areas: magnetic memories, magnetic sensors, radio-frequency and microwave devices, and logic and non-Boolean devices. We also discuss the challenges-at both the device and the system level-that need be addressed in order to integrate spintronic materials and functionalities into mainstream microelectronic platforms.
  •  
5.
  •  
6.
  • Mendonca, Tania, et al. (author)
  • OptoRheo : Simultaneous in situ micro-mechanical sensing and imaging of live 3D biological systems
  • 2023
  • In: Communications Biology. - : Springer Nature. - 2399-3642. ; 6:1
  • Journal article (peer-reviewed)abstract
    • A new instrument named OptoRheo combines light sheet fluorescence microscopy and particle tracking microrheology for live imaging and micromechanical sensing of extracellular matrix-cell interactions. Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument named 'OptoRheo' that combines light sheet fluorescence microscopy with particle tracking microrheology. OptoRheo lets us image cells in 3D as they proliferate over several days while simultaneously sensing the mechanical properties of the surrounding extracellular and pericellular matrix at a sub-cellular length scale. OptoRheo can be used in two operational modalities (with and without an optical trap) to extend the dynamic range of microrheology measurements. We corroborated this by characterising the ECM surrounding live breast cancer cells in two distinct culture systems, cell clusters in 3D hydrogels and spheroids in suspension culture. This cutting-edge instrument will transform the exploration of drug transport through complex cell culture matrices and optimise the design of the next-generation of disease models.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view