SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Andersson Astra) "

Search: WFRF:(Andersson Astra)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Christoffersen, Christina, et al. (author)
  • Isolation and characterization of human apolipoprotein M-containing lipoproteins
  • 2006
  • In: Journal of Lipid Research. - 1539-7262. ; 47:8, s. 1833-1843
  • Journal article (peer-reviewed)abstract
    • Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; similar to 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA II, apoC-I, apoC-II, apoC-III, paraoxonase 1, and apoB. ApoM-containing HDL (HDLapoM+) contained significantly more free cholesterol than HDL lacking apoM (HDLapoM-) (5.9 +/- 0.7% vs. 3.2 +/- 0.5%; P < 0.005) and was heterogeneous in size with both small and large particles. HDLapoM+ inhibited Cu2+-induced oxidation of LDL and stimulated cholesterol efflux from THP-1 foam cells more efficiently than HDLapoM-. In conclusion, our results suggest that apoM is associated with a small heterogeneous subpopulation of HDL particles. Nevertheless, apoM designates a subpopulation of HDL that protects LDL against oxidation and stimulates cholesterol efflux more efficiently than HDL lacking apoM.
  •  
2.
  • Hellstrand, Erik, et al. (author)
  • Complete high-density lipoproteins in nanoparticle corona.
  • 2009
  • In: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 276:12, s. 3372-3381
  • Journal article (peer-reviewed)abstract
    • In a biological environment, nanoparticles immediately become covered by an evolving corona of biomolecules, which gives a biological identity to the nanoparticle and determines its biological impact and fate. Previous efforts at describing the corona have concerned only its protein content. Here, for the first time, we show, using size exclusion chromatography, NMR, and pull-down experiments, that copolymer nanoparticles bind cholesterol, triglycerides and phospholipids from human plasma, and that the binding reaches saturation. The lipid and protein binding patterns correspond closely with the composition of high-density lipoprotein (HDL). By using fractionated lipoproteins, we show that HDL binds to copolymer nanoparticles with much higher specificity than other lipoproteins, probably mediated by apolipoprotein A-I. Together with the previously identified protein binding patterns in the corona, our results imply that copolymer nanoparticles bind complete HDL complexes, and may be recognized by living systems as HDL complexes, opening up these transport pathways to nanoparticles. Apolipoproteins have been identified as binding to many other nanoparticles, suggesting that lipid and lipoprotein binding is a general feature of nanoparticles under physiological conditions.
  •  
3.
  • Oslakovic, Cecilia, et al. (author)
  • Anionic Phospholipids Lose their Procoagulant Properties when Incorporated into High-Density Lipoproteins.
  • 2009
  • In: Journal of Biological Chemistry. - 1083-351X. ; 284:9, s. 5896-5904
  • Journal article (peer-reviewed)abstract
    • Blood coagulation involves a series of enzymatic protein complexes that assemble on the surface of anionic phospholipid. To investigate whether apolipoproteins affect coagulation reactions, they where included during the preparation of anionic phospholipid vesicles using a detergent solubilization-dialysis method. Apolipoprotein components of high-density lipoproteins, especially apolipoprotein A-I, had pronounced anticoagulant effect. The anionic phospholipids lost their procoagulant effect when the vesicle preparation method was performed in the presence of apolipoprotein A-I. The anionic phospholipid-apolipoprotein A-I particles were 8-10 nm in diameter and contained around 60-80 phospholipid molecules, depending on the phospholipid composition. The phospholipids of these particles were unable to support the activation of prothrombin by factor Xa in the presence of factor Va, and unable to support binding of factor Va, while binding of prothrombin and factor Xa were efficient. Phospholipid transfer protein was shown to mediate transfer of phospholipids from liposomes to apolipoprotein A-I containing reconstituted high-density lipoprotein. In addition, serum was also shown to neutralize the procoagulant effect of anionic liposomes and to efficiently mediate transfer of phospholipids from liposomes to either apolipoprotein A-I or apolipoprotein B containing particles. In conclusion, apolipoprotein A-I was found to neutralize the procoagulant properties of anionic phospholipids by arranging the phospholipids in surface areas that are too small to accommodate the prothrombinase complex. This anionic phospholipid scavenger function may be an important mechanism to control the exposure of such phospholipids to circulating blood and thereby prevent inappropriate stimulation of blood coagulation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view