SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Aprico Karina) "

Search: WFRF:(Aprico Karina)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Faijerson, Jonas, 1977, et al. (author)
  • Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro.
  • 2006
  • In: Journal of neuroscience research. - : Wiley. - 0360-4012 .- 1097-4547. ; 84:7, s. 1415-24
  • Journal article (peer-reviewed)abstract
    • Neural stem cells reside in defined areas of the adult mammalian brain, including the dentate gyrus of the hippocampus. Rat neural stem/progenitor cells (NSPCs) isolated from this region retain their multipotency in vitro and in vivo after grafting into the adult brain. Recent studies have shown that endogenous or grafted NSPCs are activated after an injury and migrate toward lesioned areas. In these areas, reactive astrocytes are present and secrete numerous molecules and growth factors; however, it is not currently known whether reactive astrocytes can influence the lineage selection of NSPCs. We investigated whether reactive astrocytes could affect the differentiation, proliferation, and survival of adult NSPCs by modelling astrogliosis in vitro, using mechanical lesion of primary astrocytes. Initially, it was found that conditioned medium from lesioned astrocytes induced astrocytic differentiation of NSPCs without affecting neuronal or oligodendrocytic differentiation. In addition, NSPCs in coculture with lesioned astrocytes also displayed increased astrocytic differentiation and some of these NSPC-derived astrocytes participated in glial scar formation in vitro. When proliferation and survival of NSPCs were analyzed, no differential effects were observed between lesioned and nonlesioned astrocytes. To investigate the molecular mechanisms of the astrocyte-inducing activity, the expression of two potent inducers of astroglial differentiation, ciliary neurotrophic factor and leukemia inhibitory factor, was analyzed by Western blot and shown to be up-regulated in conditioned medium from lesioned astrocytes. These results demonstrate that lesioned astrocytes can induce astroglial differentiation of NSPCs and provide a mechanism for astroglial differentiation of these cells following brain injury.
  •  
2.
  • Li, Lizhen, 1977, et al. (author)
  • Protective role of reactive astrocytes in brain ischemia.
  • 2008
  • In: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - : SAGE Publications. - 0271-678X .- 1559-7016. ; 28:3, s. 468-81
  • Journal article (peer-reviewed)abstract
    • Reactive astrocytes are thought to protect the penumbra during brain ischemia, but direct evidence has been lacking due to the absence of suitable experimental models. Previously, we generated mice deficient in two intermediate filament (IF) proteins, glial fibrillary acidic protein (GFAP) and vimentin, whose upregulation is the hallmark of reactive astrocytes. GFAP(-/-)Vim(-/-) mice exhibit attenuated posttraumatic reactive gliosis, improved integration of neural grafts, and posttraumatic regeneration. Seven days after middle cerebral artery (MCA) transection, infarct volume was 210 to 350% higher in GFAP(-/-)Vim(-/-) than in wild-type (WT) mice; GFAP(-/-), Vim(-/-) and WT mice had the same infarct volume. Endothelin B receptor (ET(B)R) immunoreactivity was strong on cultured astrocytes and reactive astrocytes around infarct in WT mice but undetectable in GFAP(-/-)Vim(-/-) astrocytes. In WT astrocytes, ET(B)R colocalized extensively with bundles of IFs. GFAP(-/-)Vim(-/-) astrocytes showed attenuated endothelin-3-induced blockage of gap junctions. Total and glutamate transporter-1 (GLT-1)-mediated glutamate transport was lower in GFAP(-/-)Vim(-/-) than in WT mice. DNA array analysis and quantitative real-time PCR showed downregulation of plasminogen activator inhibitor-1 (PAI-1), an inhibitor of tissue plasminogen activator. Thus, reactive astrocytes have a protective role in brain ischemia, and the absence of astrocyte IFs is linked to changes in glutamate transport, ET(B)R-mediated control of gap junctions, and PAI-1 expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view