SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Aranzana Climent Vincent) "

Sökning: WFRF:(Aranzana Climent Vincent)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akrong, Grace, et al. (författare)
  • A New Pharmacokinetic-Pharmacodynamic Model To Characterize the Inoculum Effect of Acinetobacter baumannii on Polymyxin B In Vitro
  • 2022
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 66:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The inoculum effect (i.e., reduction in antimicrobial activity at large starting inoculum) is a phenomenon described for various pathogens. Given that limited data exist regarding inoculum effect of Acinetobacter baumannii, we evaluated killing of A. baumannii by polymyxin B, a last-resort antibiotic, at several starting inocula and developed a pharmacokinetic-pharmacodynamic (PKPD) model to capture this phenomenon. In vitro static time-kill experiments were performed using polymyxin B at concentrations ranging from 0.125 to 128 mg/L against a clinical A. baumannii isolate at four starting inocula from 10(5) to 10(8) CFU/mL. Samples were collected up to 30 h to quantify the viable bacterial burden and were simultaneously modeled in the NONMEM software program. The expression of polymyxin B resistance genes (lpxACD, pmrCAB, and wzc), and genetic modifications were studied by RT-qPCR and DNA sequencing experiments, respectively. The PKPD model included a single homogeneous bacterial population with adaptive resistance. Polymyxin B effect was modeled as a sigmoidal E-max model and the inoculum effect as an increase of polymyxin B EC50 with increasing starting inoculum using a power function. Polymyxin B displayed a reduced activity as the starting inoculum increased: a 20-fold increase of polymyxin B EC50 was observed between the lowest and the highest inoculum. No effects of polymyxin B and inoculum size were observed on the studied genes. The proposed PKPD model successfully described and predicted the pronounced in vitro inoculum effect of A. baumannii on polymyxin B activity. These results should be further validated using other bacteria/antibiotic combinations and in vivo models.
  •  
2.
  • Aranzana-Climent, Vincent, et al. (författare)
  • Integration of individual preclinical and clinical anti-infective PKPD data to predict clinical study outcomes
  • 2024
  • Ingår i: Clinical and Translational Science. - : John Wiley & Sons. - 1752-8054 .- 1752-8062. ; 17:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The AIDA randomized clinical trial found no significant difference in clinical failure or survival between colistin monotherapy and colistin-meropenem combination therapy in carbapenem-resistant Gram-negative infections. The aim of this reverse translational study was to integrate all individual preclinical and clinical pharmacokinetic-pharmacodynamic (PKPD) data from the AIDA trial in a pharmacometric framework to explore whether individualized predictions of bacterial burden were associated with the trial outcomes. The compiled dataset included for each of the 207 patients was (i) information on the infecting Acinetobacter baumannii isolate (minimum inhibitory concentration, checkerboard assay data, and fitness in a murine model), (ii) colistin plasma concentrations and colistin and meropenem dosing history, and (iii) disease scores and demographics. The individual information was integrated into PKPD models, and the predicted change in bacterial count at 24 h for each patient, as well as patient characteristics, was correlated with clinical outcomes using logistic regression. The in vivo fitness was the most important factor for change in bacterial count. A model-predicted growth at 24 h of ≥ 2-log10 (164/207) correlated positively with clinical failure (adjusted odds ratio, aOR = 2.01). The aOR for one unit increase of other significant predictors were 1.24 for SOFA score, 1.19 for Charlson comorbidity index, and 1.01 for age. This study exemplifies how preclinical and clinical anti-infective PKPD data can be integrated through pharmacodynamic modeling and identify patient- and pathogen-specific factors related to clinical outcomes - an approach that may improve understanding of study outcomes.
  •  
3.
  • Aranzana-Climent, Vincent, et al. (författare)
  • Translational in vitro and in vivo PKPD modelling for apramycin against Gram-negative lung pathogens to facilitate prediction of human efficacious dose in pneumonia
  • 2022
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier B.V.. - 1198-743X .- 1469-0691. ; 28:10, s. 1367-1374
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: New drugs and methods to efficiently fight carbapenem-resistant gram-negative pathogens are sorely needed. In this study, we characterized the preclinical pharmacokinetics (PK) and pharmacodynamics of the clinical stage drug candidate apramycin in time kill and mouse lung infection models. Based on in vitro and in vivo data, we developed a mathematical model to predict human efficacy. Methods: Three pneumonia-inducing gram-negative species Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae were studied. Bactericidal kinetics were evaluated with time-kill curves; in vivo PK were studied in healthy and infected mice, with sampling in plasma and epithelial lining fluid after subcutaneous administration; in vivo efficacy was measured in a neutropenic mouse pneumonia model. A pharmacokinetic-pharmacodynamic model, integrating all the data, was developed and simulations were performed. Results: Good lung penetration of apramycin in epithelial lining fluid (ELF) was shown (area under the curve (AUC)ELF/AUCplasma = 88%). Plasma clearance was 48% lower in lung infected mice compared to healthy mice. For two out of five strains studied, a delay in growth (∼5 h) was observed in vivo but not in vitro. The mathematical model enabled integration of lung PK to drive mouse PK and pharmacodynamics. Simulations predicted that 30 mg/kg of apramycin once daily would result in bacteriostasis in patients. Discussion: Apramycin is a candidate for treatment of carbapenem-resistant gram-negative pneumonia as demonstrated in an integrated modeling framework for three bacterial species. We show that mathematical modelling is a useful tool for simultaneous inclusion of multiple data sources, notably plasma and lung in vivo PK and simulation of expected scenarios in a clinical setting, notably lung infections. © 2022 The Author(s)
  •  
4.
  • Arrazuria, Rakel, et al. (författare)
  • Expert workshop summary : Advancing toward a standardized murine model to evaluate treatments for antimicrobial resistance lung infections
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • The rise in antimicrobial resistance (AMR), and increase in treatment-refractory AMR infections, generates an urgent need to accelerate the discovery and development of novel anti-infectives. Preclinical animal models play a crucial role in assessing the efficacy of novel drugs, informing human dosing regimens and progressing drug candidates into the clinic. The Innovative Medicines Initiative-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium is establishing a validated and globally harmonized preclinical model to increase reproducibility and more reliably translate results from animals to humans. Toward this goal, in April 2021, COMBINE organized the expert workshop "Advancing toward a standardized murine model to evaluate treatments for AMR lung infections". This workshop explored the conduct and interpretation of mouse infection models, with presentations on PK/PD and efficacy studies of small molecule antibiotics, combination treatments (beta -lactam/beta -lactamase inhibitor), bacteriophage therapy, monoclonal antibodies and iron sequestering molecules, with a focus on the major Gram-negative AMR respiratory pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Here we summarize the factors of variability that we identified in murine lung infection models used for antimicrobial efficacy testing, as well as the workshop presentations, panel discussions and the survey results for the harmonization of key experimental parameters. The resulting recommendations for standard design parameters are presented in this document and will provide the basis for the development of a harmonized and bench-marked efficacy studies in preclinical murine pneumonia model.
  •  
5.
  • Arrazuria, Rakel, et al. (författare)
  • Variability of murine bacterial pneumonia models used to evaluate antimicrobial agents
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • Antimicrobial resistance has become one of the greatest threats to human health, and new antibacterial treatments are urgently needed. As a tool to develop novel therapies, animal models are essential to bridge the gap between preclinical and clinical research. However, despite common usage of in vivo models that mimic clinical infection, translational challenges remain high. Standardization of in vivo models is deemed necessary to improve the robustness and reproducibility of preclinical studies and thus translational research. The European Innovative Medicines Initiative (IMI)-funded "Collaboration for prevention and treatment of MDR bacterial infections" (COMBINE) consortium, aims to develop a standardized, quality-controlled murine pneumonia model for preclinical efficacy testing of novel anti-infective candidates and to improve tools for the translation of preclinical data to the clinic. In this review of murine pneumonia model data published in the last 10 years, we present our findings of considerable variability in the protocols employed for testing the efficacy of antimicrobial compounds using this in vivo model. Based on specific inclusion criteria, fifty-three studies focusing on antimicrobial assessment against Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were reviewed in detail. The data revealed marked differences in the experimental design of the murine pneumonia models employed in the literature. Notably, several differences were observed in variables that are expected to impact the obtained results, such as the immune status of the animals, the age, infection route and sample processing, highlighting the necessity of a standardized model.
  •  
6.
  • Becker, K., et al. (författare)
  • Efficacy of EBL-1003 (apramycin) against Acinetobacter baumannii lung infections in mice
  • 2021
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier B.V.. - 1198-743X .- 1469-0691. ; 27:9, s. 1315-
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Novel therapeutics are urgently required for the treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) causing critical infections with high mortality. Here we assessed the therapeutic potential of the clinical-stage drug candidate EBL-1003 (crystalline free base of apramycin) in the treatment of CRAB lung infections. Methods: The genotypic and phenotypic susceptibility of CRAB clinical isolates to aminoglycosides and colistin was assessed by database mining and broth microdilution. The therapeutic potential was assessed by target attainment simulations on the basis of time–kill kinetics, a murine lung infection model, comparative pharmacokinetic analysis in plasma, epithelial lining fluid (ELF) and lung tissue, and pharmacokinetic/pharmacodynamic (PKPD) modelling. Results: Resistance gene annotations of 5451 CRAB genomes deposited in the National Database of Antibiotic Resistant Organisms (NDARO) suggested >99.9% of genotypic susceptibility to apramycin. Low susceptibility to standard-of-care aminoglycosides and high susceptibility to EBL-1003 were confirmed by antimicrobial susceptibility testing of 100 A. baumannii isolates. Time–kill experiments and a mouse lung infection model with the extremely drug-resistant CRAB strain AR Bank #0282 resulted in rapid 4-log CFU reduction both in vitro and in vivo. A single dose of 125 mg/kg EBL-1003 in CRAB-infected mice resulted in an AUC of 339 h × μg/mL in plasma and 299 h × μg/mL in ELF, suggesting a lung penetration of 88%. PKPD simulations suggested a previously predicted dose of 30 mg/kg in patients (creatinine clearance (CLCr) = 80 mL/min) to result in >99% probability of –2 log target attainment for MICs up to 16 μg/mL. Conclusions: This study provides proof of concept for the efficacy of EBL-1003 in the treatment of CRAB lung infections. Broad in vitro coverage, rapid killing, potent in vivo efficacy, and a high probability of target attainment render EBL-1003 a strong therapeutic candidate for a priority pathogen for which treatment options are very limited. © 2020 The Author(s)
  •  
7.
  • Minichmayr, Iris, et al. (författare)
  • Pharmacokinetic/pharmacodynamic models for time courses of antibiotic effects
  • 2022
  • Ingår i: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 60:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Pharmacokinetic/pharmacodynamic (PKPD) models have emerged as valuable tools for the characterization and translation of antibiotic effects, and consequently for drug development and therapy. In contrast to traditional PKPD concepts for antibiotics such as minimum inhibitory concentration and PKPD indices, PKPD models enable description of the continuous, often species- or population-dependent time course of antimicrobial effects, commonly considering mechanistic pathogen- and drug-related knowledge. This review presents a comprehensive overview of previously published PKPD models describing repeated measurements of antibiotic effects. A literature review was conducted to identify PKPD models based on: (i) antibiotic compounds; (ii) Gram-positive or Gram-negative pathogens; and (iii) in-vitro or in-vivo longitudinal colony-forming unit data. In total, 132 publications were identified that were released between 1963 and 2021, including models based on exposure to single antibiotics (n=92) and drug combinations (n=40), as well as different experimental settings (e.g. static/traditional dynamic/hollowfibre/animal time-kill models, n=90/27/32/11). An interactive, fully searchable table summarizes the details of each model, namely variants and mechanistic elements of PKPD submodels capturing observed bacterial growth, regrowth, drug effects and interactions. Furthermore, the review highlights the main purposes of PKPD model development, including the translation of preclinical PKPD to clinical settings, and the assessment of varied dosing regimens and patient characteristics for their impact on clinical antibiotic effects. In summary, this comprehensive overview of PKPD models will assist in identifying PKPD modelling strategies to describe growth, killing, regrowth and interaction patterns for pathogen-antibiotic combinations over time, and ultimately facilitate model-informed antibiotic translation, dosing and drug development. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy