SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arndt Mirjam) "

Search: WFRF:(Arndt Mirjam)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hans, Marcus, et al. (author)
  • Stress-Dependent Elasticity of TiAlN Coatings
  • 2019
  • In: Coatings. - : MDPI. - 2079-6412. ; 9:1
  • Journal article (peer-reviewed)abstract
    • We investigate the effect of continuous vs. periodically interrupted plasma exposure during cathodic arc evaporation on the elastic modulus as well as the residual stress state of metastable cubic TiAlN coatings. Nanoindentation reveals that the elastic modulus of TiAlN grown at floating potential with continuous plasma exposure is 7%-11% larger than for coatings grown with periodically interrupted plasma exposure due to substrate rotation. In combination with X-ray stress analysis, it is evident that the elastic modulus is governed by the residual stress state. The experimental dependence of the elastic modulus on the stress state is in excellent agreement with ab initio predictions. The macroparticle surface coverage exhibits a strong angular dependence as both density and size of incorporated macroparticles are significantly lower during continuous plasma exposure. Scanning transmission electron microscopy in combination with energy dispersive X-ray spectroscopy reveals the formation of underdense boundary regions between the matrix and TiN-rich macroparticles. The estimated porosity is on the order of 1% and a porosity-induced elastic modulus reduction of 5%-9% may be expected based on effective medium theory. It appears reasonable to assume that these underdense boundary regions enable stress relaxation causing the experimentally determined reduction in elastic modulus as the population of macroparticles is increased.
  •  
2.
  • Hans, Marcus, et al. (author)
  • Substrate rotation-induced chemical modulation in Ti-Al-O-N coatings synthesized by cathodic arc in an industrial deposition plant
  • 2016
  • In: Surface & Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 305, s. 249-253
  • Journal article (peer-reviewed)abstract
    • Reactive cathodic arc evaporation of Ti-Al-O-N was carried out in an industrial deposition system with two-fold substrate rotation. The structural and compositional evolution of the coatings was studied by combining scanning transmission electron microscopy and 3D atom probe tomography (APT). The formation of alternating O- and N-rich sublayers was identified by APT and can be understood by considering the substrate rotation induced variation in plasma density and fluxes of film-forming species. The effect of plasma density and fluxes on the incorporation of reactive species was studied in stationary deposition experiments and preferred N incorporation occurs, when the growing coating surface is facing the arc source. Thus, the growing surface is positioned in a region of high plasma density characterized by large fluxes of film forming-species. Preferred O incorporation takes place in a region of low plasma density where small fluxes are present, when the growing surface is blocked from the arc source by the substrate holder. Hence, compositional modulations are caused by substrate rotation as the growing coating surface is periodically exposed to regions of high plasma density and large fluxes of film-forming species and regions of low plasma density and small fluxes. These findings are highly relevant for all reactive industrial plasma assisted physical vapor deposition processes utilizing substrate rotation.
  •  
3.
  • Holzapfel, Damian M., et al. (author)
  • Enhanced thermal stability of (Ti,Al)N coatings by oxygen incorporation
  • 2021
  • In: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 218
  • Journal article (peer-reviewed)abstract
    • Thermal stability of protective coatings is one of the performance-defining properties for advanced cutting and forming applications as well as for energy conversion. To investigate the effect of oxygen incorporation on the high-temperature behavior of (Ti,Al)N, metastable cubic (Ti,Al)N and (Ti,Al)(OxN1-x) coatings are synthesized using reactive arc evaporation. X-ray diffraction of (Ti,Al)N and (Ti,Al)(OxN1-x) coatings reveals that spinodal decomposition is initiated at approximately 800 degrees C, while the subsequent formation of wurtzite solid solution is clearly delayed from 1000 degrees C to 1300 degrees C for (Ti,Al)(OxN1-x) compared to (Ti,Al)N. This thermal stability enhancement can be rationalized based on calculated vacancy formation energies in combination with spatially-resolved composition analysis and calorimetric data: Energy dispersive X-ray spectroscopy and atom probe tomography data indicate a lower O solubility in wurtzite solid solution compared to cubic (Ti,Al)(O,N). Hence, it is evident that for the growth of the wurtzite, AlN-rich phase in (Ti,Al)N, only mobility of Ti and Al is required, while for (Ti,Al)(O,N), in addition to mobile metal atoms, also non-metal mobility is required. Prerequisite for mobility on the non-metal sublattice is the formation of non-metal vacancies which require larger temperatures than for the metal sublattice due to significantly larger magnitudes of formation energies for the non-metal vacancies compared to the metal vacancies. This notion is consistent with calorimetry data which indicate that the combined energy necessary to form and grow the wurtzite phase is larger by a factor of approximately two in (Ti,Al)(O,N) than in (Ti,Al)N, causing the here reported thermal stability increase. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
  •  
4.
  • Holzapfel, Damian M., et al. (author)
  • Influence of ion irradiation-induced defects on phase formation and thermal stability of Ti0.27Al0.21N0.52 coatings
  • 2022
  • In: Acta Materialia. - : Elsevier. - 1359-6454 .- 1873-2453. ; 237
  • Journal article (peer-reviewed)abstract
    • The influence of changes induced by ion irradiation on structure and thermal stability of metastable cubic (Ti,Al)N coatings deposited by cathodic arc evaporation is systematically investigated by correlating experiments and theory. Decreasing the nitrogen deposition pressure from 5.0 to 0.5 Pa results in an ion flux-enhancement by a factor of three and an increase of the average ion energy from 15 to 30 eV, causing the stress-free lattice parameter to expand from 4.170 to 4.206 Å, while the chemical composition of Ti0.27Al0.21N0.52 remains unchanged. The 0.9% lattice parameter increase is a consequence of formation of Frenkel pairs induced by ion bombardment, as revealed by density functional theory (DFT) simulations. The influence of the presence of Frenkel pairs on the thermal stability of metastable Ti0.27Al0.21N0.52 is investigated by scanning transmission electron microscopy, differential scanning calorimetry, atom probe tomography and in-situ synchrotron X-ray powder diffraction. It is demonstrated that the ion flux and ion energy induced formation of Frenkel pairs increases the thermal stability as the Al diffusion enabled crystallization of the wurtzite solid solution is retarded. This can be rationalized by DFT predictions since the presence of Frenkel pairs increases the activation energy for Al diffusion by up to 142%. Hence, the thermal stability enhancement is caused by a hitherto unreported mechanism - the Frenkel pair impeded Al mobility and thereby retarded formation of wurtzite solid solution.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view