SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Arner P.) "

Search: WFRF:(Arner P.)

  • Result 1-10 of 482
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Forrest, ARR, et al. (author)
  • A promoter-level mammalian expression atlas
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Journal article (peer-reviewed)
  •  
3.
  • Noguchi, S, et al. (author)
  • FANTOM5 CAGE profiles of human and mouse samples
  • 2017
  • In: Scientific data. - : Springer Science and Business Media LLC. - 2052-4463. ; 4, s. 170112-
  • Journal article (peer-reviewed)abstract
    • In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.
  •  
4.
  •  
5.
  • Ramilowski, JA, et al. (author)
  • Functional annotation of human long noncoding RNAs via molecular phenotyping
  • 2020
  • In: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 30:7, s. 1060-1072
  • Journal article (peer-reviewed)abstract
    • Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-to-date lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
  •  
6.
  •  
7.
  • Ehrlund, A, et al. (author)
  • Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution
  • 2017
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 66:1, s. 218-230
  • Journal article (peer-reviewed)abstract
    • White adipose tissue (WAT) can develop into several phenotypes with different pathophysiological impact on type 2 diabetes. To better understand the adipogenic process, the transcriptional events that occur during in vitro differentiation of human adipocytes were investigated and the findings linked to WAT phenotypes. Single-molecule transcriptional profiling provided a detailed map of the expressional changes of genes, enhancers, and long noncoding RNAs, where different types of transcripts share common dynamics during differentiation. Common signatures include early downregulated, transient, and late induced transcripts, all of which are linked to distinct developmental processes during adipogenesis. Enhancers expressed during adipogenesis overlap significantly with genetic variants associated with WAT distribution. Transiently expressed and late induced genes are associated with hypertrophic WAT (few but large fat cells), a phenotype closely linked to insulin resistance and type 2 diabetes. Transcription factors that are expressed early or transiently affect differentiation and adipocyte function and are controlled by several well-known upstream regulators such as glucocorticosteroids, insulin, cAMP, and thyroid hormones. Taken together, our results suggest a complex but highly coordinated regulation of adipogenesis.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 482

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view