SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Asarian Loredana) "

Search: WFRF:(Asarian Loredana)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hoffman, Evan T., et al. (author)
  • Human alveolar hydrogels promote morphological and transcriptional differentiation in iPSC-derived alveolar type 2 epithelial cells
  • 2023
  • In: Scientific Reports. - 2045-2322. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Alveolar type 2 epithelial cells (AT2s) derived from human induced pluripotent stem cells (iAT2s) have rapidly contributed to our understanding of AT2 function and disease. However, while iAT2s are primarily cultured in three-dimensional (3D) Matrigel, a matrix derived from cancerous mouse tissue, it is unclear how a physiologically relevant matrix will impact iAT2s phenotype. As extracellular matrix (ECM) is recognized as a vital component in directing cellular function and differentiation, we sought to derive hydrogels from decellularized human lung alveolar-enriched ECM (aECM) to provide an ex vivo model to characterize the role of physiologically relevant ECM on iAT2 phenotype. We demonstrate aECM hydrogels retain critical in situ ECM components, including structural and basement membrane proteins. While aECM hydrogels facilitate iAT2 proliferation and alveolosphere formation, a subset of iAT2s rapidly change morphology to thin and elongated ring-like cells. This morphological change correlates with upregulation of recently described iAT2-derived transitional cell state genetic markers. As such, we demonstrate a potentially underappreciated role of physiologically relevant aECM in iAT2 differentiation.
  •  
2.
  • Hoffman, Evan T., et al. (author)
  • Regional and disease specific human lung extracellular matrix composition
  • 2023
  • In: Biomaterials. - : Elsevier BV. - 0142-9612. ; 293
  • Journal article (peer-reviewed)abstract
    • Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view