SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ashtiani A.) "

Search: WFRF:(Ashtiani A.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Yang, Xinping, et al. (author)
  • Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing
  • 2016
  • In: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 164:4, s. 805-817
  • Journal article (peer-reviewed)abstract
    • While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms'' are functionally divergent (i.e., "functional alloforms'').
  •  
4.
  • Nilforoushan, Faramarz, et al. (author)
  • GPS network monitors the Arabia-Eurasia collision deformation in Iran
  • 2003
  • In: Journal of Geodesy. - : Springer Science and Business Media LLC. - 0949-7714 .- 1432-1394. ; 77, s. 411-422
  • Journal article (peer-reviewed)abstract
    • The rate of crustal deformation in Iran due to the Arabia–Eurasia collision is estimated. The results are based on new global positioning system (GPS) data. In order to address the problem of the distribution of the deformation in Iran, Iranian and French research organizations have carried out the first large-scale GPS survey of Iran. A GPS network of 28 sites (25 in Iran, two in Oman and one in Uzbekistan) has been installed and surveyed twice, in September 1999 and October 2001. Each site has been surveyed for a minimum observation of 4 days. GPS data processing has been done using the GAMIT-GLOBK software package. The solution displays horizontal repeatabilities of about 1.2 mm in 1999 and 2001. The resulting velocities allow us to constrain the kinematics of the Iranian tectonic blocks. These velocities are given in ITRF2000 and also relative to Eurasia. This last kinematic model demonstrates that (1) the north–south shortening from Arabia to Eurasia is 2–2.5 cm/year, less than previously estimated, and (2) the transition from subduction (Makran) to collision (Zagros) is very sharp and governs the different styles of deformation observed in Iran. In the eastern part of Iran, most of the shortening is accommodated in the Gulf of Oman, while in the western part the shortening is more distributed from south to north. The large faults surrounding the Lut block accommodate most of the subduction–collision transition.
  •  
5.
  • Vernant, P, et al. (author)
  • Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman
  • 2004
  • In: Geophysical Journal International. - 0956-540X .- 1365-246X. ; 157:1, s. 381-398
  • Journal article (peer-reviewed)abstract
    • A network of 27 GPS sites was implemented in Iran and northern Oman to measure displacements in this part of the Alpine–Himalayan mountain belt. We present and interpret the results of two surveys performed in 1999 September and 2001 October. GPS sites in Oman show northward motion of the Arabian Plate relative to Eurasia slower than the NUVEL-1A estimates (e.g. 22 ± 2 mm yr−1 at N8°± 5°E instead of 30.5 mm yr−1 at N6°E at Bahrain longitude). We define a GPS Arabia–Eurasia Euler vector of 27.9°± 0.5°N, 19.5°± 1.4°E, 0.41°± 0.1° Myr−1. The Arabia–Eurasia convergence is accommodated differently in eastern and western Iran. East of 58°E, most of the shortening is accommodated by the Makran subduction zone (19.5 ± 2 mm yr−1) and less by the Kopet-Dag (6.5 ± 2 mm yr−1). West of 58°E, the deformation is distributed in separate fold and thrust belts. At the longitude of Tehran, the Zagros and the Alborz mountain ranges accommodate 6.5 ± 2 mm yr−1 and 8 ± 2 mm yr−1 respectively. The right-lateral displacement along the Main Recent Fault in the northern Zagros is about 3 ± 2 mm yr−1, smaller than what was generally expected. By contrast, large right-lateral displacement takes place in northwestern Iran (up to 8 ± mm yr−1). The Central Iranian Block is characterized by coherent plate motion (internal deformation <2 mm yr−1). Sites east of 61°E show very low displacements relative to Eurasia. The kinematic contrast between eastern and western Iran is accommodated by strike-slip motions along the Lut Block. To the south, the transition zone between Zagros and Makran is under transpression with right-lateral displacements of 11 ± 2 mm yr−1.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view