SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Asokan Shilpa M. 1979 ) "

Search: WFRF:(Asokan Shilpa M. 1979 )

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Asokan, Shilpa M., 1979-, et al. (author)
  • Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions
  • 2008
  • In: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 22:18, s. 3589-3603
  • Journal article (peer-reviewed)abstract
    • The paper presents the outcomes of a study conducted to analyse water resources availability and demand in the Mahanadi River Basin in India under climate change conditions. Climate change impact analysis was carried out for the years 2000, 2025, 2050, 2075 and 2100, for the months of September and April (representing wet and dry months), at a sub-catchment level. A physically based distributed hydrologic model (DHM) was used for estimation of the present water availability. For future scenarios under climate change conditions, precipitation output of Canadian Centre for Climate Modelling and Analysis General Circulation Model (CGCM2) was used as the input data for the DHM. The model results show that the highest increase in peak runoff (38%) in the Mahanadi River outlet will occur during September, for the period 2075-2100 and the maximum decrease in average runoff (32·5%) will be in April, for the period 2050-2075. The outcomes indicate that the Mahanadi River Basin is expected to experience progressively increasing intensities of flood in September and drought in April over the considered years. The sectors of domestic, irrigation and industry were considered for water demand estimation. The outcomes of the analysis on present water use indicated a high water abstraction by the irrigation sector. Future water demand shows an increasing trend until 2050, beyond which the demand will decrease owing to the assumed regulation of population explosion. From the simulated future water availability and projected water demand, water stress was computed. Among the six sub-catchments, the sub-catchment six shows the peak water demand. This study hence emphasizes on the need for re-defining water management policies, by incorporating hydrological response of the basin to the long-term climate change, which will help in developing appropriate flood and drought mitigation measures at the basin level.
  •  
2.
  •  
3.
  • Asokan, Shilpa M., 1979-, et al. (author)
  • Irrigation effects on hydro-climatic change : Basin-wise water balance-constrained quantification and cross-regional comparison
  • 2014
  • In: Surveys in geophysics. - : Springer Science and Business Media LLC. - 0169-3298 .- 1573-0956. ; 35:3, s. 879-895
  • Research review (peer-reviewed)abstract
    • Hydro-climatic changes driven by human land and water use, including water use for irrigation, may be difficult to distinguish fromthe effects of global, natural and anthropogenic climate change. This paper quantifies and compares the hydro-climatic change effects ofirrigation using a data-driven, basin-wise quantification approach in two different irrigated world regions: the Aral Sea drainage basinin Central Asia, and the Indian Mahanadi River Basin draining into the Bay of Bengal. Results show that irrigation-driven changesin evapotranspiration and latent heat fluxes and associated temperature changes at the land surface may be greater in regions withsmall relative irrigation impacts on water availability in the landscape (here represented by the MRB) than in regions with severe suchimpacts (here represented by the Aral region). Different perspectives on the continental part of Earth’s hydrological cycle may thus implydifferent importance assessment of various drivers and impacts of hydro-climatic change. Regardless of perspective, however, actualbasin-wise water balance constraints should be accounted to realistically understand and accurately quantify continental water change.
  •  
4.
  • Asokan, Shilpa M., 1979-, et al. (author)
  • Vapor flux by evapotranspiration : effects of changes in climate, land-use and water-use
  • 2010
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115:D24
  • Journal article (peer-reviewed)abstract
    • Enhanced evapotranspiration (ET) over irrigated land and associated latent heat flux change can modify the climate. Model studies of such climate change effects of irrigation are commonly based on land use parameterizations, in terms of irrigated land area, or land area equipped for irrigation. Actual ET change, however, may also be driven by water use change in addition to land use change. This study quantifies and compares ET changes due to changes in climate, land use, and water use from the preirrigation period 1901–1955 to the recent period 1990–2000 (with irrigation) for the example case of Mahanadi River Basin (MRB) in India. The results show that actual water use per unit area of irrigated land may vary greatly over a hydrological drainage basin. In MRB, much higher water use per irrigated land unit in the downstream humid basin parts leads to higher vapor flux by ET, and irrigation‐induced ET flux change, than in the upstream, water‐stressed basin parts. This is consistent with water supply limitations in water‐stressed basins. In contrast, the assumption in land use−based models that irrigation maintains high soil moisture contents can imply higher modeled water use and therefore also higher modeled ET fluxes under dry conditions than under humid conditions. The present results indicate water use as an important driver of regional climate change, in addition to land use and greenhouse gas‐driven changes.
  •  
5.
  • Jarsjö, Jerker, et al. (author)
  • Hydrological responses to climate change conditioned by historic alterations of land use and water use
  • 2012
  • In: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 16:5, s. 1335-1347
  • Journal article (peer-reviewed)abstract
    • This paper quantifies and conditions expected hydrological responses in the Aral Sea Drainage Basin (ASDB; occupying 1.3% of the earth's land surface), Central Asia, to multi-model projections of climate change in the region from 20 general circulation models (GCMs). The aim is to investigate how uncertainties of future climate change interact with the effects of historic human re-distributions of water for land irrigation to influence future water fluxes and water resources. So far, historic irrigation changes have greatly amplified water losses by evapotranspiration (ET) in the ASDB, whereas 20th century climate change has not much affected the regional net water loss to the atmosphere. Results show that errors in temperature (T) and precipitation (P) from single GCMs have large influence on projected change trends (for the period 2010-2039) of river runoff (R), even though the ASDB is spatially well resolved by current GCMs. By contrast, observed biases in GCM ensemble mean results have relatively small influence on projected R change trends. Ensemble mean results show that projected future climate change will considerably increase the net water loss to the atmosphere. Furthermore, the ET response strength to any future T change will be further increased by maintained (or increased) irrigation practices, which shows how climate change and water use change can interact in modifying ET (and R). With maintained irrigation practices, R is likely to decrease to near-total depletion, with risk for cascading ecological regime shifts in aquatic ecosystems downstream of irrigated land areas. Without irrigation, the agricultural areas of the principal Syr Darya river basin could sustain a 50% higher T increase (of 2.3 A degrees C instead of the projected 1.5 A degrees C until 2010-2039) before yielding the same consumptive ET increase and associated R decrease as with the present irrigation practices.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view