SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Asoli Damir) "

Search: WFRF:(Asoli Damir)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Anttu, Nicklas, et al. (author)
  • Absorption of light in InP nanowire arrays
  • 2014
  • In: Nano Reseach. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 7:6, s. 816-823
  • Journal article (peer-reviewed)abstract
    • An understanding of the absorption of light is essential for efficient photovoltaic and photodetection applications with III-V nanowire arrays. Here, we correlate experiments with modeling and verify experimentally the predicted absorption of light in InP nanowire arrays for varying nanowire diameter and length. We find that 2,000 nm long nanowires in a pitch of 400 nm can absorb 94% of the incident light with energy above the band gap and, as a consequence, light which in a simple ray-optics description would be travelling between the nanowires can be efficiently absorbed by the nanowires. Our measurements demonstrate that the absorption for long nanowires is limited by insertion reflection losses when light is coupled from the air top-region into the array. These reflection losses can be reduced by introducing a smaller diameter to the nanowire-part closest to the air top-region. For nanowire arrays with such a nanowire morphology modulation, we find that the absorptance increases monotonously with increasing diameter of the rest of the nanowire.
  •  
2.
  • Jain, Vishal, 1989-, et al. (author)
  • Processing and Characterization of Nanowire Arrays for Photodetectors
  • 2015
  • In: Nano-Structures for Optics and Photonics. - Dordrecht : Springer. - 9789401791427 - 9789401791328 - 9789401791335 ; , s. 511-512
  • Conference paper (peer-reviewed)abstract
    • We present a fabrication scheme of contacting arrays of vertically standing nanowires (NW) for LEDs (Duan et al. Nature 409:66–69, 2001), photodetectors (Wang et al. Science (NY) 293:1455–1457, 2001) or solar cell applications (Wallentin et al. Science (NY) 339:1057–1060, 2013). Samples were prepared by depositing Au films using nano-imprint lithography (Må rtensson et al. Nano Lett 4:699–702, 2004) which are used as catalysts for NW growth in a low-pressure metal organic vapour phase epitaxy system where III-V precursors and dopant gases are flown at elevated temperatures which lead to the formation of NWs with different segments (Borgström et al. Nano Res 3:264–270, 2010). An insulating SiO2 layer is then deposited and etched from the top segments of the NWs followed by sputtering of a transparent top conducting oxide and opening up 1 × 1 mm2 device areas through a UV lithography step and etching of the top contact from non-device areas. A second UV lithography step was subsequently carried out to open up smaller windows on the ITO squares for bond pad definition, followed by metallization and lift-off; and the substrate is used as back contact. We also report on the electrical and optical properties of near-infrared p+−i−n+ photodetectors/solar cells based on square millimeter ensembles of InP nanowires grown on InP substrates. The study includes a sample series where the p +-segment length was varied between 0 and 250 nm, as well as solar cell samples with 9.3 % efficiency with similar design. The NWs have a complex modulated crystal structure of alternating wurtzite and zincblende segments, a polytypism that depends on dopant type. The electrical data for all samples display excellent rectifying behavior with an ideality factor of about 2 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p +-segment length. Without p +-segment in the NWs, photogenerated carriers funneled from the substrate into the NWs contribute significantly to the photocurrent. Adding a p +-segment shifts the depletion region up into the i-region of the NWs reducing the substrate contribution to photocurrent while strongly improving the collections of carriers generated in the NWs, in agreement with theoretical modeling (Fig. 48.1). © Springer Science+Business Media Dordrecht 2015.
  •  
3.
  • Jain, Vishal, et al. (author)
  • Study of photocurrent generation in InP nanowire-based p(+)-i-n(+) photodetectors
  • 2014
  • In: Nano Reseach. - Beijing & Berlin/Heidelberg : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 7:4, s. 544-552
  • Journal article (peer-reviewed)abstract
    • We report on electrical and optical properties of p(+)-i-n(+)photodetectors/solar cells based on square millimeter arrays of InP nanowires (NWs) grown on InP substrates. The study includes a sample series where the p(+)-segment length was varied between 0 and 250 nm, as well as solar cells with 9.3% efficiency with similar design. The electrical data for all devices display clear rectifying behavior with an ideality factor between 1.8 and 2.5 at 300 K. From spectrally resolved photocurrent measurements, we conclude that the photocurrent generation process depends strongly on the p(+)-segment length. Without a p(+)-segment, photogenerated carriers funneled from the substrate into the NWs contribute strongly to the photocurrent. Adding a p(+)-segment decouples the substrate and shifts the depletion region, and collection of photogenerated carriers, to the NWs, in agreement with theoretical modeling. In optimized solar cells, clear spectral signatures of interband transitions in the zinc blende and wurtzite InP layers of the mixed-phase i-segments are observed. Complementary electroluminescence, transmission electron microscopy (TEM), as well as measurements of the dependence of the photocurrent on angle of incidence and polarization, support our interpretations.
  •  
4.
  • Wallentin, Jesper, et al. (author)
  • InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit.
  • 2013
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 339:6123, s. 1057-1060
  • Journal article (peer-reviewed)abstract
    • Photovoltaics based on nanowire arrays could reduce cost and materials consumption compared to planar devices, but have exhibited low efficiency of light absorption and carrier collection. We fabricated a variety of millimeter-sized arrays of p-i-n doped InP nanowires and found that the nanowire diameter and the length of the top n-segment were critical for cell performance. Efficiencies up to 13.8% (comparable to the record planar InP cell) were achieved using resonant light trapping in 180-nanometer-diameter nanowires that only covered 12% of the surface. The share of sunlight converted into photocurrent (71%) was six times the limit in a simple ray optics description. Furthermore, the highest open circuit voltage of 0.906 volt exceeds that of its planar counterpart, despite about 30 times higher surface-to-volume ratio of the nanowire cell.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view