SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Azevedo Nuno F.) "

Search: WFRF:(Azevedo Nuno F.)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Azevedo, Carla, et al. (author)
  • Parkinsons disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:12
  • Journal article (peer-reviewed)abstract
    • Limited evidence has shed light on how aSYN proteins affect the oligodendrocyte phenotype and pathogenesis in synucleinopathies that include Parkinsons disease (PD) and multiple system atrophy (MSA). Here, we investigated early transcriptomic changes within PD and MSA O4(+) oligodendrocyte lineage cells (OLCs) generated from patient-induced pluripotent stem cells (iPSCs). We found impaired maturation of PD and MSA O4(+) OLCs compared to controls. This phenotype was associated with changes in the human leukocyte antigen (HLA) genes, the immunoproteasome subunit PSMB9, and the complement component C4b for aSYN p.A53T and MSA O4(+) OLCs, but not in SNCA(trip) O4(+) OLCs despite high levels of aSYN assembly formation. Moreover, SNCA overexpression resulted in the development of O4(+) OLCs, whereas exogenous treatment with aSYN species led to significant toxicity. Notably, transcriptome profiling of genes encoding proteins forming Lewy bodies and glial cytoplasmic inclusions revealed clustering of PD aSYN p.A53T O4(+) OLCs with MSA O4(+) OLCs. Our work identifies early phenotypic and pathogenic changes within human PD and MSA O4(+) OLCs.
  •  
2.
  • Bogas, Diana, et al. (author)
  • Applications of optical DNA mapping in microbiology
  • 2017
  • In: BioTechniques. - : Future Science Ltd. - 0736-6205 .- 1940-9818. ; 62:6, s. 255-267
  • Research review (peer-reviewed)abstract
    • Optical mapping (OM) has been used in microbiology for the past 20 years, initially as a technique to facilitate DNA sequence-based studies; however, with decreases in DNA sequencing costs and increases in sequence output from automated sequencing platforms, OM has grown into an important auxiliary tool for genome assembly and comparison. Currently, there are a number of new and exciting applications for OM in the field of microbiology, including investigation of disease outbreaks, identification of specific genes of clinical and/or epidemiological relevance, and the possibility of single-cell analysis when combined with cell-sorting approaches. In addition, designing lab-on-a-chip systems based on OM is now feasible and will allow the integrated and automated microbiological analysis of biological fluids. Here, we review the basic technology of OM, detail the current state of the art of the field, and look ahead to possible future developments in OM technology for microbiological applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view