SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Back P. E.) "

Search: WFRF:(Back P. E.)

  • Result 1-10 of 69
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bécoulet, A., et al. (author)
  • Science and technology research and development in support to ITER and the Broader Approach at CEA
  • 2013
  • In: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10
  • Journal article (peer-reviewed)abstract
    • In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.
  •  
2.
  •  
3.
  •  
4.
  • Singh, B., et al. (author)
  • Study of doubly strange systems using stored antiprotons
  • 2016
  • In: Nuclear Physics A. - : Elsevier. - 0375-9474 .- 1873-1554. ; 954, s. 323-340
  • Journal article (peer-reviewed)abstract
    • Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Xi(-) -atoms will be feasible and even the production of Omega(-) -atoms will be within reach. The latter might open the door to the vertical bar S vertical bar = 3 world in strangeness nuclear physics, by the study of the hadronic Omega(-) -nucleus interaction. For the first time it will be possible to study the behavior of Xi(+) in nuclear systems under well controlled conditions.
  •  
5.
  •  
6.
  • Ahdida, C., et al. (author)
  • Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks
  • 2019
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHIP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of O(10(6)). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution.
  •  
7.
  • Ahdida, C., et al. (author)
  • Sensitivity of the SHiP experiment to Heavy Neutral Leptons
  • 2019
  • In: Journal of High Energy Physics (JHEP). - 1126-6708 .- 1029-8479. ; :4
  • Journal article (peer-reviewed)abstract
    • Heavy Neutral Leptons (HNLs) are hypothetical particles predicted by many extensions of the Standard Model. These particles can, among other things, explain the origin of neutrino masses, generate the observed matter-antimatter asymmetry in the Universe and provide a dark matter candidate. The SHiP experiment will be able to search for HNLs produced in decays of heavy mesons and travelling distances ranging between O(50 m) and tens of kilometers before decaying. We present the sensitivity of the SHiP experiment to a number of HNL's benchmark models and provide a way to calculate the SHiP's sensitivity to HNLs for arbitrary patterns of flavour mixings. The corresponding tools and data files are also made publicly available.
  •  
8.
  • Ahdida, C., et al. (author)
  • The experimental facility for the Search for Hidden Particles at the CERN SPS
  • 2019
  • In: Journal of Instrumentation. - : Institute of Physics Publishing (IOPP). - 1748-0221. ; 14
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1-3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to O(10) GeV/c(2) in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background.
  •  
9.
  • Ahdida, C., et al. (author)
  • The magnet of the scattering and neutrino detector for the SHiP experiment at CERN
  • 2020
  • In: Journal of Instrumentation. - 1748-0221. ; 15:01
  • Journal article (peer-reviewed)abstract
    • The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.
  •  
10.
  • Ahdida, C., et al. (author)
  • Track reconstruction and matching between emulsion and silicon pixel detectors for the SHiP-charm experiment
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 17:3
  • Journal article (peer-reviewed)abstract
    • In July 2018 an optimization run for the proposed charm cross section measurement for SHiP was performed at the CERN SPS. A heavy, moving target instrumented with nuclear emulsion films followed by a silicon pixel tracker was installed in front of the Goliath magnet at the H4 proton beam-line. Behind the magnet, scintillating-fibre, drift-tube and RPC detectors were placed. The purpose of this run was to validate the measurement's feasibility, to develop the required analysis tools and fine-tune the detector layout. In this paper, we present the track reconstruction in the pixel tracker and the track matching with the moving emulsion detector. The pixel detector performed as expected and it is shown that, after proper alignment, a vertex matching rate of 87% is achieved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 69
Type of publication
journal article (58)
conference paper (10)
reports (1)
Type of content
peer-reviewed (60)
other academic/artistic (9)
Author/Editor
Back, M (28)
Bogomilov, M. (11)
Tsenov, R. (11)
Kanai, Y. (11)
Back, J.J. (11)
Gavrilov, G. (11)
show more...
Shevchenko, V (11)
Alexander, SPH (11)
Faccenda, E (11)
Pawson, AJ (11)
Sharman, JL (11)
Peters, JA (11)
Kelly, E (11)
Southan, C (11)
Davies, JA (11)
Becirovic, E (11)
Biel, M (11)
Boison, D (11)
Brauner-Osborne, H (11)
Broer, S (11)
Bryant, C (11)
Burnstock, G (11)
Calo, G (11)
Chiang, N (11)
Christopoulos, A (11)
Dent, G (11)
Douglas, SD (11)
Fong, TM (11)
Fuller, P (11)
Gainetdinov, RR (11)
Grissmer, S (11)
Gundlach, AL (11)
Hagenbuch, B (11)
Hammond, JR (11)
Holliday, ND (11)
Hoyer, D (11)
Ijzerman, AP (11)
Jacobson, KA (11)
Jockers, R (11)
Kaczmarek, LK (11)
Karnik, S (11)
Lolait, SJ (11)
Macewan, D (11)
Mazella, J (11)
McArdle, CA (11)
Michel, MC (11)
Mouillac, B (11)
Murphy, PM (11)
Nahon, JL (11)
Norel, X (11)
show less...
University
Karolinska Institutet (35)
Uppsala University (17)
Stockholm University (13)
Royal Institute of Technology (8)
University of Gothenburg (7)
Chalmers University of Technology (6)
show more...
Lund University (2)
Umeå University (1)
Högskolan Dalarna (1)
Swedish University of Agricultural Sciences (1)
show less...
Language
English (69)
Research subject (UKÄ/SCB)
Natural sciences (25)
Medical and Health Sciences (5)
Engineering and Technology (4)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view